×

Corotational mixed finite element formulation for thin-walled beams with generic cross-section. (English) Zbl 1225.74076

Summary: The corotational technique is adopted here for the analysis of three-dimensional beams. The technique exploits the technology that applies to a two-noded element, a coordinate system which continuously translates and rotates with the element. In this way, the rigid body motion is separated out from the deformational motion. In this paper, a mixed formulation are adopted for the derivation of the local element tangent stiffness matrix and nodal forces. The mixed finite element formulation is based on an incremental form of the two-field Hellinger – Reissner variational principle to permit elasto-plastic material behavior. The local beam kinematics is based on a low-order nonlinear strain expression using Bernoulli assumption. The present formulation captures both the Saint – Venant and warping torsional effects of thin-walled open cross-sections. Shape functions that satisfy the nonlinear local equilibrium equations are selected for the interpolation of the stress resultants. In particular, for the torsional forces and the twist rotation degree of freedom, a family of hyperbolic interpolation functions is adopted in lieu of conventional polynomials. Governing equations are expressed in a weak form, and the constitutive equations are enforced at each integration cross-section along the element length. A consistent state determination algorithm is proposed. This local element, together with the corotational framework, can be used to analyze the nonlinear buckling and postbuckling of thin-walled beams with generic cross-section. The present corotational mixed element solution is compared against the results obtained from a corotational displacement-based model having the same beam kinematics and corotational framework. The superiority of the mixed formulation is clearly demonstrated.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)

Software:

MASTAN
Full Text: DOI

References:

[1] Izzuddin, B. A.; Smith, D. L., Large-displacement analysis of elastoplastic thin-walled frames. I: Formulation and implementation, J. Struct. Engrg. (ASCE), 122, 8, 905-914 (1996)
[2] Izzuddin, B. A.; Smith, D. L., Large-displacement analysis of elastoplastic thin-walled frames. II: Verification and application, J. Struct. Engrg. (ASCE), 122, 8, 915-925 (1996)
[3] Kim, S.; Lee, J.; Choi, S.; Kim, C., Practical second-order inelastic analysis for steel frames subjected to distributed load, Engrg. Struct., 26, 1, 51-61 (2003)
[4] Zhou, Z.; Chan, S., Elastoplastic and large deflection analysis of steel frames by one element per member. I: One hinge along member, J. Struct. Engrg. (ASCE), 130, 4, 538-544 (2004)
[5] Chan, S.; Zhou, Z., Elastoplastic and large deflection analysis of steel frames by one element per member. II: Three hinges along member, J. Struct. Engrg. (ASCE), 130, 4, 545-553 (2004)
[7] Spacone, E.; Ciampi, V.; Filippou, F. C., Mixed formulation of nonlinear beam finite element, Comput. Struct., 58, 1, 71-83 (1996) · Zbl 0918.73154
[8] Petrangeli, M.; Ciampi, V., Equilibrium based iterative solutions for the non-linear beam problem, Int. J. Numer. Methods Engrg., 40, 3, 423-437 (1997)
[9] Neuenhofer, A.; Filippou, F. C., Geometrically nonlinear flexibility-based frame finite element, J. Struct. Engrg. (ASCE), 6, 124, 704-711 (1998)
[11] Nukala, P. K.; White, D. W., A mixed finite element formulation for three-dimensional nonlinear analysis of steel frames, Comput. Methods Appl. Mech. Engrg., 193, 23-26, 2507-2545 (2004) · Zbl 1067.74582
[12] Alemdar, B. N.; White, D. W., Displacement, flexibility, and mixed beam-column finite element formulations for distributed plasticity analysis, J. Struct. Engrg. (ASCE), 131, 12, 1811-1819 (2005)
[13] Wackerfuß, J.; Gruttmann, F., A mixed hybrid finite beam element with an interface to arbitrary three-dimensional material models, Comput. Methods Appl. Mech. Engrg., 198, 27-29, 2053-2066 (2009) · Zbl 1227.74101
[17] Battini, J.-M.; Pacoste, C., Co-rotational beam elements with warping effects in instability problems, Comput. Methods Appl. Mech. Engrg., 191, 17, 1755-1789 (2002) · Zbl 1098.74680
[18] Battini, J.-M.; Pacoste, C., Plastic instability of beam structures using co-rotational elements, Comput. Methods Appl. Mech. Engrg., 191, 51, 5811-5831 (2002) · Zbl 1083.74531
[19] Crisfield, M. A.; Moita, G. F., A unified corotational framework for solids, shells and beams, Int. J. Solids Struct., 33, 20-22, 2969-2992 (1996) · Zbl 0905.73067
[20] Chen, H. H.; Lin, W. Y.; Hsiao, K. M., Co-rotational finite element formulation for thin-walled beams with generic open section, Comput. Methods Appl. Mech. Engrg., 195, 19-22, 2334-2370 (2006) · Zbl 1154.74384
[21] Garcea, G.; Madeo, A.; Zagari, G.; Casciaro, R., Asymptotic post-buckling FEM analysis using corotational formulation, Int. J. Solids Struct., 46, 2, 377-397 (2009) · Zbl 1168.74350
[22] Yang, Y. B.; Lin, S. P.; Chen, C. S., Rigid body concept for geometric nonlinear analysis of 3D frames, plates and shells based on the updated Lagrangian formulation, Comput. Methods Appl. Mech. Engrg., 196, 7, 1178-1192 (2007) · Zbl 1173.74450
[23] Yang, Y. B.; Lin, S. P.; Leu, L. J., Solution strategy and rigid element for nonlinear analysis of elastically structures based on updated Lagrangian formulation, Engrg. Struct., 29, 6, 1189-1200 (2007)
[24] Simo, J. C.; Vu-Quoc, L., On the dynamics in space of rods undergoing large motions – a geometrically exact approach, Comput. Methods Appl. Mech. Engrg., 66, 2, 125-161 (1988) · Zbl 0618.73100
[25] Mata, P.; Oller, S.; Barbat, A. H., Dynamic analysis of beam structures considering geometric and constitutive nonlinearity, Comput. Methods Appl. Mech. Engrg., 197, 6-8, 857-878 (2008) · Zbl 1169.74462
[26] Pi, Y. L.; Bradford, M. A.; Uy, B., A spatially curved-beam element with warping and Wagner effects, Int. J. Numer. Methods Engrg., 63, 9, 1342-1369 (2005) · Zbl 1138.74401
[28] Gruttmann, F.; Sauer, R.; Wagner, W., Theory and numerics of three-dimensional beams with elastoplastic material behavior, Int. J. Numer. Methods Engrg., 48, 12, 1675-1702 (2000) · Zbl 0989.74069
[29] Pi, Y. L.; Bradford, M. A., Effects of approximations in analyses of beams of open thin-walled cross-section. Part I: Flexural-torsional instability, Int. J. Numer. Methods Engrg., 51, 7, 757-772 (2001) · Zbl 1106.74364
[31] Van Erp, G. M.; Menken, C. M.; Veldpaus, F. E., The nonlinear flexural-torsional behavior of straight slender elastic beams with arbitrary cross-sections, Thin-wall. Struct., 6, 5, 385-404 (1988)
[32] McGuire, W. M.; Gallagher, H. G.; Ziemian, R. D., Matrix Structural Analysis (2000), John Wiley and Sons: John Wiley and Sons New York
[33] Mohareb, M.; Nowzartash, F., Exact finite element for nonuniform torsion of open sections, J. Struct. Engrg. (ASCE), 129, 2, 215-223 (2003)
[34] Erkmen, R. E.; Mohareb, M., Torsion analysis of thin-walled beams including shear deformation effects, Thin-wall. Struct., 44, 10, 1096-1108 (2006)
[36] Antman, S. S., The theory of rods, (Handbuch der Physik, vol. VIa/2 (1972), Springer: Springer Berlin) · Zbl 0188.57501
[37] Gjelsvik, A., The Theory of Thin Walled Bars (1981), John Wiley and Sons: John Wiley and Sons New York · Zbl 0558.73037
[38] Simo, J. C.; Vu-Quoc, L., A geometrically-exact rod model incorporating shear, torsion-warping deformation, Int. J. Solids Struct., 27, 3, 371-393 (1991) · Zbl 0731.73029
[40] Nukala, P. K.; White, D. W., Variationally consistent state determination algorithms for nonlinear mixed beam finite elements, Comput. Methods Appl. Mech. Engrg., 193, 33-35, 3647-3666 (2004) · Zbl 1090.74690
[42] Hughes, T. J.R., The Finite Element Method (1987), Prentice-Hall · Zbl 0634.73056
[43] Bathe, K. J., Finite Element Procedures (1996), Prentice-Hall · Zbl 0511.73065
[45] Trahair, N. S., Nonlinear elastic nonuniform torsion, J. Struct. Engrg. (ASCE), 131, 7, 1135-1142 (2005)
[46] Massonnet, C. E.; Cescottos, S., Mécanique des Matériaux (1992), De Boeck Université: De Boeck Université Bruxelles
[47] Chan, S. L.; Kitipornchai, S., Geometrically nonlinear analysis of asymmetrical thin-walled beam-columns, Engrg. Struct., 9, 4, 243-254 (1987)
[48] Kim, M. Y.; Chang, S. P.; Park, H. G., Spatial postbuckling analysis of nonsymmetric thin-walled frames. I: Theoretical considerations based on semitangential property, J. Engrg. Mech. (ASCE), 127, 8, 769-778 (2001)
[49] Kim, M. Y.; Chang, S. P.; Kim, S. B., Spatial postbuckling analysis of nonsymmetric thin-walled frames. II: Geometrically nonlinear FE procedures, J. Engrg. Mech. (ASCE), 127, 8, 779-790 (2001)
[50] Kim, M. Y.; Chang, S. P.; Kim, S. B., Spatial stability analysis of thin walled space frames, Int. J. Numer. Methods Engrg., 39, 3, 499-525 (1996) · Zbl 0846.73063
[53] Jetteur, P.; Frey, F., A four node Marguerre element for nonlinear shell analysis, Engrg. Comput., 3, 4, 176-282 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.