×

Analysis on products of fractals. (English) Zbl 1056.31006

On many finitely ramified fractals (p.c.f. fractals, to be precise) a fractal “Laplacian” is known to exist. Here products of such fractals and of their Laplacians are considered. Intuitively, the Laplacian of a single fractal is almost one dimensional and gives rise to ODEs, the Laplacian of a product is higher dimensional and gives rise to PDEs. The arguments mimic the construction of the square and its classical two dimensional Laplacian as the product of two lines and their classical one dimensional Laplacians.
The same strategy is used by N. Bouleau and F. Hirsch [Dirichlet forms and analysis on Wiener space. (de Gruyter Studies in Mathematics 14), Berlin: de Gruyter (1991; Zbl 0748.60046)] to construct tensor products of Dirichlet spaces. Once an energy (Dirichlet form) has been constructed, harmonic functions are defined to be energy minimizing. The transition kernel of the product is the product of the individual transition kernels like in [J. Bliedtner and W. Hansen, Potential theory (Springer) (1986; Zbl 0706.31001)]. Known heat kernel estimates on p.c.f. fractals from B. M. Hambly and T. Kumagai [Proc. Lond. Math. Soc., III. Ser. 78, No. 2, 431–458 (1999; Zbl 1027.60087)] are then used to estimate the product kernel.
Together with spectral representations and further assumptions this allows the author to construct trace and extension operators, a Poisson formula for harmonic functions and pointwise expressions for the energy and the Laplacian. An abundance of open problems and future directions is mentioned throughout the text.

MSC:

31C05 Harmonic, subharmonic, superharmonic functions on other spaces
60J45 Probabilistic potential theory
31C25 Dirichlet forms
28A80 Fractals
Full Text: DOI

References:

[1] G. Barbatis, Explicit estimates on the fundamental solution of higher-order parabolic equations with measurable coefficients, J. Differential Equations 174 (2001), no. 2, 442 – 463. · Zbl 0993.35037 · doi:10.1006/jdeq.2000.3940
[2] G. Barbatis and E. B. Davies, Sharp bounds on heat kernels of higher order uniformly elliptic operators, J. Operator Theory 36 (1996), no. 1, 179 – 198. · Zbl 0869.35048
[3] Martin T. Barlow, Diffusions on fractals, Lectures on probability theory and statistics (Saint-Flour, 1995) Lecture Notes in Math., vol. 1690, Springer, Berlin, 1998, pp. 1 – 121. · Zbl 0916.60069 · doi:10.1007/BFb0092537
[4] Martin T. Barlow and Edwin A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (1988), no. 4, 543 – 623. · Zbl 0635.60090 · doi:10.1007/BF00318785
[5] Oren Ben-Bassat, Robert S. Strichartz, and Alexander Teplyaev, What is not in the domain of the Laplacian on Sierpinski gasket type fractals, J. Funct. Anal. 166 (1999), no. 2, 197 – 217. · Zbl 0948.35045 · doi:10.1006/jfan.1999.3431
[6] N. Ben-Gal, A. Shaw-Krauss, R. Strichartz and C. Young, Calculus on the Sierpinski gasket II: point singularities, eigenfunctions, and normal derivatives of the heat kernel, preprint. · Zbl 1098.31004
[7] Christian Berg, Potential theory on the infinite dimensional torus, Invent. Math. 32 (1976), no. 1, 49 – 100. · Zbl 0371.31007 · doi:10.1007/BF01389771
[8] James H. Bramble and Lawrence E. Payne, Bounds for the first derivatives of Green’s function, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 42 (1967), 604 – 610 (English, with Italian summary). · Zbl 0158.12505
[9] Thierry Coulhon, Off-diagonal heat kernel lower bounds without Poincaré, J. London Math. Soc. (2) 68 (2003), no. 3, 795 – 816. · Zbl 1083.58025 · doi:10.1112/S0024610703004770
[10] K. Coletta, K. Dias and R. Strichartz, Numerical analysis on the Sierpinski gasket, with applications to Schrödinger equations, wave equation, and Gibbs’ phenomenon, Fractals (to appear). · Zbl 1304.28005
[11] Kyallee Dalrymple, Robert S. Strichartz, and Jade P. Vinson, Fractal differential equations on the Sierpinski gasket, J. Fourier Anal. Appl. 5 (1999), no. 2-3, 203 – 284. · Zbl 0937.31010 · doi:10.1007/BF01261610
[12] Xuan Thinh Duong, El Maati Ouhabaz, and Adam Sikora, Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal. 196 (2002), no. 2, 443 – 485. · Zbl 1029.43006 · doi:10.1016/S0022-1236(02)00009-5
[13] M. Fukushima and T. Shima, On a spectral analysis for the Sierpiński gasket, Potential Anal. 1 (1992), no. 1, 1 – 35. · Zbl 1081.31501 · doi:10.1007/BF00249784
[14] Alexander Grigor’yan, Jiaxin Hu, and Ka-Sing Lau, Heat kernels on metric measure spaces and an application to semilinear elliptic equations, Trans. Amer. Math. Soc. 355 (2003), no. 5, 2065 – 2095. · Zbl 1018.60075
[15] B. M. Hambly and T. Kumagai, Transition density estimates for diffusion processes on post critically finite self-similar fractals, Proc. London Math. Soc. (3) 78 (1999), no. 2, 431 – 458. · Zbl 1027.60087 · doi:10.1112/S0024611599001744
[16] Shigeo Kusuoka and Zhou Xian Yin, Dirichlet forms on fractals: Poincaré constant and resistance, Probab. Theory Related Fields 93 (1992), no. 2, 169 – 196. · Zbl 0767.60076 · doi:10.1007/BF01195228
[17] Jun Kigami, A harmonic calculus on the Sierpiński spaces, Japan J. Appl. Math. 6 (1989), no. 2, 259 – 290. · Zbl 0686.31003 · doi:10.1007/BF03167882
[18] Jun Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335 (1993), no. 2, 721 – 755. · Zbl 0773.31009
[19] Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. · Zbl 0998.28004
[20] Jun Kigami, Harmonic analysis for resistance forms, J. Funct. Anal. 204 (2003), no. 2, 399 – 444. · Zbl 1039.31014 · doi:10.1016/S0022-1236(02)00149-0
[21] Volker Metz, Renormalization contracts on nested fractals, J. Reine Angew. Math. 480 (1996), 161 – 175. · Zbl 0858.31008 · doi:10.1515/crll.1996.480.161
[22] R. Oberlin, B. Street and R. Strichartz, Sampling on the Sierpinski gasket, Experimental Math. 12 (2003), 403-418. · Zbl 1057.28004
[23] Roberto Peirone, Convergence and uniqueness problems for Dirichlet forms on fractals, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 3 (2000), no. 2, 431 – 460 (English, with Italian summary). · Zbl 0958.31005
[24] C. Sabot, Existence and uniqueness of diffusions on finitely ramified self-similar fractals, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 5, 605 – 673 (English, with English and French summaries). · Zbl 0924.60064 · doi:10.1016/S0012-9593(97)89934-X
[25] Jeremy Stanley, Robert S. Strichartz, and Alexander Teplyaev, Energy partition on fractals, Indiana Univ. Math. J. 52 (2003), no. 1, 133 – 156. · Zbl 1037.31011 · doi:10.1512/iumj.2003.52.2115
[26] L. N. Slobodeckiĭ and V. M. Babič, On boundedness of the Dirichlet integrals, Dokl. Akad. Nauk SSSR (N.S.) 106 (1956), 604 – 606 (Russian).
[27] Robert S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031 – 1060. · Zbl 0145.38301
[28] Robert S. Strichartz, Some properties of Laplacians on fractals, J. Funct. Anal. 164 (1999), no. 2, 181 – 208. · Zbl 0994.35044 · doi:10.1006/jfan.1999.3400
[29] Robert S. Strichartz, Analysis on fractals, Notices Amer. Math. Soc. 46 (1999), no. 10, 1199 – 1208. · Zbl 1194.58022
[30] Robert S. Strichartz, The Laplacian on the Sierpinski gasket via the method of averages, Pacific J. Math. 201 (2001), no. 1, 241 – 256. · Zbl 1090.35064 · doi:10.2140/pjm.2001.201.241
[31] Robert S. Strichartz, Function spaces on fractals, J. Funct. Anal. 198 (2003), no. 1, 43 – 83. · Zbl 1023.46034 · doi:10.1016/S0022-1236(02)00035-6
[32] Robert S. Strichartz, Fractafolds based on the Sierpiński gasket and their spectra, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4019 – 4043. · Zbl 1041.28006
[33] Robert S. Strichartz and Michael Usher, Splines on fractals, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 2, 331 – 360. · Zbl 0978.31005 · doi:10.1017/S0305004100004424
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.