×

Adaptive virtual element method for large-strain phase-field fracture. (English) Zbl 1504.74081

Aldakheel, Fadi (ed.) et al., Current trends and open problems in computational mechanics. Cham: Springer. 195-206 (2022).
Summary: In this contribution, the phase-field (PF) approach to brittle fracture is extended to adaptively refined meshes at finite strains. Such mesh refinement produces regular structured elements with hanging nodes at edges. These hanging nodes can be included to the mesh by employing the Virtual Element Method (VEM). The model performance is demonstrated by two representative numerical examples.
For the entire collection see [Zbl 1487.74005].

MSC:

74S99 Numerical and other methods in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74R10 Brittle fracture

Software:

AceFEM
Full Text: DOI

References:

[1] Wriggers, P., Aldakheel, F., & Hudobivnik, B. (2019). Application of the virtual element method in mechanics. \( GAMM-Rundbriefe, 1(2019), 4-10\). · Zbl 1468.74085
[2] Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., & Russo, A. (2013). Basic principles of virtual element methods. Mathematical Models and Methods in Applied Sciences, 23(1), 199-214. · Zbl 1416.65433 · doi:10.1142/S0218202512500492
[3] Artioli, E., Beirão da Veiga, L., Lovadina, C., & Sacco, E. (2017). Arbitrary order 2D virtual elements for polygonal meshes: Part I, elastic problem. Computational Mechanics, 60(3), 355-377. · Zbl 1386.74132 · doi:10.1007/s00466-017-1404-5
[4] Wriggers, P., Rust, W. T., & Reddy, B. D. (2016). A virtual element method for contact. Computational Mechanics, 58(6), 1039-1050. · Zbl 1398.74420 · doi:10.1007/s00466-016-1331-x
[5] Aldakheel, F., Hudobivnik, B., Artioli, E., da Veiga, L. B., & Wriggers, P. (2020). Curvilinear virtual elements for contact mechanics. Computer Methods in Applied Mechanics and Engineering,372, 113394. · Zbl 1506.74382
[6] Wriggers, P., Hudobivnik, B., & Aldakheel, F. (2021). Nurbs-based geometries: A mapping approach for virtual serendipity elements. Computer Methods in Applied Mechanics and Engineering,378, 113732. · Zbl 1506.74452
[7] De Bellis, M. L., Wriggers, P., & Hudobivnik, B. (2019). Serendipity virtual element formulation for nonlinear elasticity. Computers & Structures,223, 106094.
[8] Hudobivnik, B., Aldakheel, F., & Wriggers, P. (2018). A low order 3d virtual element formulation for finite elasto-plastic deformations. Computational Mechanics, 63(2), 253-269. · Zbl 1468.74085 · doi:10.1007/s00466-018-1593-6
[9] Aldakheel, F., Hudobivnik, B., Hussein, A., & Wriggers, P. (2018). Phase-field modeling of brittle fracture using an efficient virtual element scheme. Computer Methods in Applied Mechanics and Engineering, 341, 443-466. · Zbl 1440.74352 · doi:10.1016/j.cma.2018.07.008
[10] Hussein, A., Aldakheel, F., Hudobivnik, B., Wriggers, P., Guidault, P.-A., & Allix, O. (2019). A computational framework for brittle crack-propagation based on efficient virtual element method. Finite Elements in Analysis and Design, 159, 15-32. · doi:10.1016/j.finel.2019.03.001
[11] Aldakheel, F., Hudobivnik, B., & Wriggers, P. (2019). Virtual element formulation for phase-field modeling of ductile fracture. International Journal for Multiscale Computational Engineering, 17(2), 181-200. · doi:10.1615/IntJMultCompEng.2018026804
[12] Miehe, C., Hofacker, M., Schänzel, L.-M., & Aldakheel, F. (2015). Phase field modeling of fracture in multi-physics problems. part ii. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Computer Methods in Applied Mechanics and Engineering, 294, 486-522. · Zbl 1423.74837 · doi:10.1016/j.cma.2014.11.017
[13] Aldakheel, F., Hudobivnik, B., & Wriggers, P. (2019). Virtual elements for finite thermo-plasticity problems. Computational Mechanics, 64(5), 1347-1360. · Zbl 1464.74382 · doi:10.1007/s00466-019-01714-2
[14] Wriggers, P., & Hudobivnik, B. (2017). A low order virtual element formulation for finite elasto-plastic deformations. Computer Methods in Applied Mechanics and Engineering, 327, 459-477. · Zbl 1439.74070 · doi:10.1016/j.cma.2017.08.053
[15] Korelc, J., & Wriggers, P. (2016). Automation of finite element methods. Berlin: Springer International Publishing. · Zbl 1367.74001 · doi:10.1007/978-3-319-39005-5
[16] Aldakheel, F. (2016). Mechanics of nonlocal dissipative solids: Gradient plasticity and phase field modeling of ductile fracture. Stuttgart: Institut für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgart. https://doi.org/10.18419/opus-8803.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.