×

A complex mathematical model of the human menstrual cycle. (English) Zbl 1455.92021

Summary: Despite the fact that more than 100 million women worldwide use birth control pills and that half of the world’s population is concerned, the menstrual cycle has so far received comparatively little attention in the field of mathematical modeling. The term menstrual cycle comprises the processes of the control system in the female body that, under healthy circumstances, lead to ovulation at regular intervals, thus making reproduction possible. If this is not the case or ovulation is not desired, the question arises how this control system can be influenced, for example, by hormonal treatments. In order to be able to cover a vast range of external manipulations, the mathematical model must comprise the main components where the processes belonging to the menstrual cycle occur, as well as their interrelations. A system of differential equations serves as the mathematical model, describing the dynamics of hormones, enzymes, receptors, and follicular phases. Since the processes take place in different parts of the body and influence each other with a certain delay, passing over to delay differential equations is deemed a reasonable step. The pulsatile release of the gonadotropin-releasing hormone (GnRH) is controlled by a complex neural network. We choose to model the pulse time points of this GnRH pulse generator by a stochastic process. Focus in this paper is on the model development. This rather elaborate mathematical model is the basis for a detailed analysis and could be helpful for possible drug design.

MSC:

92C30 Physiology (general)
92B25 Biological rhythms and synchronization
92C50 Medical applications (general)
34K14 Almost and pseudo-almost periodic solutions to functional-differential equations

Software:

NewtonLib
Full Text: DOI

References:

[1] Anderson, L., Intracellular mechanisms triggering gonadotrophin secretion, Rev. Reprod., 1, 3, 193-202 (1996)
[2] Blum, J. J.; Reed, M. C.; Janovick, J. A.; Conn, P. M., A mathematical model quantifying GnRH-induced LH secretion from gonadotropes, Am. J. Physiol. Endocrinol. Metab., 278, 2, E263-E272 (2000)
[3] Bogumil, R. J.; Ferin, M.; Rootenberg, J.; Speroff, L.; vande Wiele, R. L., Mathematical studies of the human menstrual cycle. I. Formulation of a mathematical model, J. Clin. Endocrinol. Metab., 35, 1, 126-143 (1972)
[4] Bogumil, R. J.; Ferin, M.; vande Wiele, R. L., Mathematical studies of the human menstrual cycle. II. Simulation performance of a model of the human menstrual cycle, J. Clin. Endocrinol. Metab., 35, 1, 144-156 (1972)
[5] Chabbert-Buffet, N.; Bouchard, P., The normal human menstrual cycle, Rev. Endocr. Metab. Disord., 3, 3, 173-183 (2002)
[6] Chávez-Ross, A.; Franks, S.; Mason, H. D.; Hardy, K.; Stark, J., Modelling the control of ovulation and polycystic ovary syndrome, J. Math. Biol., 36, 1, 95-118 (1997) · Zbl 0895.92016
[7] Clément, F., Optimal control of the cell dynamics in the granulosa of ovulatory follicles, Math. Biosci., 152, 2, 123-142 (1998) · Zbl 0930.92007
[8] Clément, F.; Gruet, M. A.; Monget, P.; Terqui, M.; Jolivet, E.; Monniaux, D., Growth kinetics of the granulosa cell population in ovarian follicles: an approach by mathematical modelling, Cell Proliferation, 30, 6-7, 255-270 (1997)
[9] Clément, F.; Monniaux, D.; Stark, J.; Hardy, K.; Thalabard, J. C.; Franks, S.; Claude, D., Mathematical model of FSH-induced cAMP production in ovarian follicles, Am. J. Physiol. Endocrinol. Metab., 281, 1, E35-E53 (2001)
[10] Conley, A. J.; Bird, I. M., The role of cytochrome \(P450 17 \alpha \)-hydroxylase and \(3 \beta \)-hydroxysteroid dehydrogenase in the integration of gonadal and adrenal steroidogenesis via the \(\operatorname{\Delta} 5\) and \(\operatorname{\Delta} 4\) pathways of steroidogenesis in mammals, Biol. Reprod., 56, 4, 789-799 (1997)
[11] Cooke, B.A., King, R.J.B., van der Molen, H.J. (Eds.), 1988. Hormones and their Actions. Part II. Elsevier Science Publishers BV, Amsterdam.
[12] Deuflhard, P., Newton methods for nonlinear problems. Affine invariance and adaptive algorithms. Springer Series in Computational Mathematics, vol. 35 (2004), Springer: Springer Berlin · Zbl 1056.65051
[13] Deuflhard, P.; Bornemann, F., Scientific computing with ordinary differential equations. Texts in Applied Mathematics, vol. 42 (2002), Springer: Springer Berlin · Zbl 1001.65071
[14] Deuflhard, P.; Nowak, U., Efficient numerical simulation and identification of large chemical reaction systems, Ber. Bunsenges. Phys. Chem., 90, 11, 940-946 (1986)
[15] Gordan, J. D.; Attardi, B. J.; Pfaff, D. W., Mathematical exploration of pulsatility in cultured gonadotropin-releasing hormone neurons, Neuroendocrinology, 67, 1, 2-17 (1998)
[16] Greenspan, F.S., Strewler, G.J. (Eds.), 1997. Basic & Clinical Endocrinology, fifth ed. Appleton & Lange, Stamford, CT.
[17] Grigolienė, R.; Švitra, D., The mathematical model of the female menstrual cycle and its modifications, Informatica, 11, 4, 411-420 (2000) · Zbl 0976.92008
[18] Harris, L.A., 2001. Differential equation models for the hormonal regulation of the menstrual cycle. Ph.D. Thesis, North Carolina State University.
[19] Harris Clark, L.; Schlosser, P. M.; Selgrade, J. F., Multiple stable periodic solutions in a model for hormonal control of the menstrual cycle, Bull. Math. Biol., 65, 1, 157-173 (2003) · Zbl 1334.92090
[20] Heinze, K.; Keener, R. W.; Midgley, A. R., A mathematical model of luteinizing hormone release from ovine pituitary cells in perifusion, Am. J. Physiol. Endocrinol. Metab., 275, 6, E1061-E1071 (1998)
[21] Herbison, A. E., Noradrenergic regulation of cyclic GnRH secretion, Rev. Reprod., 2, 1, 1-6 (1997)
[22] Keck, C., Neulen, J., Behre, H.M., Breckwoldt, M. (Eds.), 2002. Endokrinologie, Reproduktionsmedizin, Andrologie, second ed. Georg Thieme Verlag, Stuttgart.
[23] Keenan, D. M.; Veldhuis, J. D., A biomathematical model of time-delayed feedback in the human male hypothalamic-pituitary-Leydig cell axis, Am. J. Physiol. Endocrinol. Metab., 275, 1, E157-E176 (1998)
[24] Keenan, D. M.; Sun, W.; Veldhuis, J. D., A stochastic biomathematical model of the male reproductive hormone system, SIAM J. Appl. Math., 61, 3, 934-965 (2000) · Zbl 0992.92018
[25] KEGG PATHWAY Database, October \(10, 2006. \langle\) http://www.genome.jp/kegg/pathway.html \(\rangle \).
[26] Klipp, E.; Herwig, R.; Kowald, A.; Wierling, C.; Lehrach, H., Systems Biology in Practice. Concepts, Implementation and Application (2005), Wiley-VCH: Wiley-VCH Weinheim
[27] Lacker, H. M.; Akin, E., How do the ovaries count?, Math. Biosci., 90, 305-332 (1988) · Zbl 0671.92006
[28] López, F. J.; Merchenthaler, I. J.; Moretto, M.; Negro-Vilar, A., Modulating mechanisms of neuroendocrine cell activity: the LHRH pulse generator, Cell. Mol. Neurobiol., 18, 1, 125-146 (1998)
[29] Magoffin, D. A.; Jakimiuk, A. J., Inhibin A, inhibin B and activin A in the follicular fluid of regularly cycling women, Hum. Reprod., 12, 8, 1714-1719 (1997)
[30] Mammakarzinom-Info.de, October \(10, 2006, \langle\) http://www.mammakarzinom-info.de \(\rangle \).
[31] Marshall, J. C.; Dalkin, A. C.; Haisenleder, D. J.; Paul, S. J.; Ortolano, G. A.; Kelch, R. P., Gonadotropin-releasing hormone pulses: regulators of gonadotropin synthesis and ovulatory cycles, Recent Prog. Horm. Res., 47, 155-187 (1991)
[32] McLachlan, R. I.; Cohen, N. L.; Dahl, K. D.; Bremner, W. J.; Soules, M. R., Serum inhibin levels during the periovulatory interval in normal women: relationships with sex steroid and gonadotrophin levels, Clin. Endocrinol., 32, 1, 39-48 (1990)
[33] Moenter, S. M.; Brand, R. C.; Karsch, F. J., Dynamics of gonadotropin-releasing hormone (GnRH) secretion during the GnRH surge: insights into the mechanism of GnRH surge induction, Endocrinology, 130, 5, 2978-2984 (1992)
[34] Obruca, A.; Fischl, F.; Huber, J., GnRH—Gonadotropin releasing hormon: mechanismen und therapeutische anwendung in der assistierten reproduktion, J. Fertil. Reprod., 2, 28-33 (1998)
[35] Rasgon, N. L.; Pumphrey, L.; Prolo, P.; Elman, S.; Negrao, A.; Licinio, J.; Garfinkel, A., Emergent oscillations in mathematical model of the human menstrual cycle, CNS Spectrums, 8, 11, 805-814 (2003)
[36] Rissman, E. F., Behavioral regulation of gonadotropin-releasing hormone, Biol. Reprod., 54, 413-419 (1996)
[37] Roche, J. F., Control and regulation of folliculogenesis—a symposium in perspective, Rev. Reprod., 1, 1, 19-27 (1996)
[38] Schlosser, P. M.; Selgrade, J. F., A model of gonadotropin regulation during the menstrual cycle in women: qualitative features, Environ. Health Perspect. Suppl., 108, Suppl. 5, 873-881 (2000)
[39] Segel, I. H., Enzyme Kinetics. Behavior and Analysis of Rapid Equilibrium and Steady-state Enzyme Systems (1975), Wiley-Interscience: Wiley-Interscience New York
[40] Selgrade, J. F.; Schlosser, P. M., A model for the production of ovarian hormones during the menstrual cycle, Fields Inst. Commun., 21, 429-446 (1999) · Zbl 0979.92016
[41] Skinner, D. C.; Evans, N. P.; Delaleu, B.; Goodman, R. L.; Bouchard, P.; Caraty, A., The negative feedback actions of progesterone on gonadotropin-releasing hormone secretion are transduced by the classical progesterone receptor, Proc. Natl Acad. Sci. USA, 95, 10978-10983 (1998)
[42] Strauss III, J. F., The synthesis and metabolism of steroid hormones, (Yen, S. S.C.; Jaffe, R. B.; Barbieri, R. L., Reproductive Endocrinology. Physiology, Pathophysiology, and Clinical Management (1999), W.B. Saunders Company: W.B. Saunders Company London), 125-154
[43] Strauss III, J. F.; Williams, C. J., The ovarian life cycle, (Yen, S. S.C.; Jaffe, R. B.; Barbieri, R. L., Reproductive Endocrinology. Physiology, Pathophysiology, and Clinical Management (1999), W.B. Saunders Company: W.B. Saunders Company London), 213-253
[44] Švitra, D.; Grigolienė, R.; Puidokaitė, A., Regulation of an ovulatory cycle, Nonlinear Anal. Modelling Control, 2, 107-114 (1998)
[45] Swerdloff, R. S.; Jacobs, H. S.; Odell, W. D., Synergistic role of progestogens in estrogen induction of LH and FSH surge, Endocrinology, 90, 6, 1529-1536 (1972)
[46] Washington, T. M.; Blum, J. J.; Reed, M. C.; Conn, P. M., A mathematical model for LH release in response to continuous and pulsatile exposure of gonadotrophs to GnRH, Theor. Biol. Med. Modelling, 1, 9 (2004)
[47] Yen, S. S.C., The human menstrual cycle: neuroendocrine regulation, (Yen, S. S.C.; Jaffe, R. B., Reproductive Endocrinology. Physiology, Pathophysiology, and Clinical Management (1991), W.B. Saunders Company: W.B. Saunders Company Philadelphia), 191-217
[48] Zeleznik, A. J., The physiology of follicle selection, Reprod. Biol. Endocrinol., 2, 31 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.