×

Variational integrators for nonvariational partial differential equations. (English) Zbl 1364.35017

Summary: Variational integrators for Lagrangian dynamical systems provide a systematic way to derive geometric numerical methods. These methods preserve a discrete multisymplectic form as well as momenta associated to symmetries of the Lagrangian via Noether’s theorem. An inevitable prerequisite for the derivation of variational integrators is the existence of a variational formulation for the considered problem. Even though for a large class of systems this requirement is fulfilled, there are many interesting examples which do not belong to this class, e.g., equations of advection-diffusion type frequently encountered in fluid dynamics or plasma physics. On the other hand, it is always possible to embed an arbitrary dynamical system into a larger Lagrangian system using the method of formal (or adjoint) Lagrangians. We investigate the application of the variational integrator method to formal Lagrangians, and thereby extend the application domain of variational integrators to include potentially all dynamical systems. The theory is supported by physically relevant examples, such as the advection equation and the vorticity equation, and numerically verified. Remarkably, the integrator for the vorticity equation combines Arakawa’s discretisation of the Poisson brackets with a symplectic time stepping scheme in a fully covariant way such that the discrete energy is exactly preserved. In the presentation of the results, we try to make the geometric framework of variational integrators accessible to non-specialists.

MSC:

35A35 Theoretical approximation in context of PDEs
37J05 Relations of dynamical systems with symplectic geometry and topology (MSC2010)
37J15 Symmetries, invariants, invariant manifolds, momentum maps, reduction (MSC2010)

References:

[1] Christiansen, Snorre H.; Munthe-Kaas, Hans Z.; Owren, Brynjulf, Topics in structure-preserving discretization, Acta Numer., 20, 1-119 (2011) · Zbl 1233.65087
[2] Hairer, Ernst; Lubich, Christian; Wanner, Gerhard, Geometric Numerical Integration (2006), Springer · Zbl 1094.65125
[3] Budd, Chris J.; Piggott, Matthew D., Geometric integration and its applications, (Handbook of numerical analysis (2000), North-Holland), 35-139 · Zbl 1062.65134
[4] Wendlandt, Jeffrey M.; Marsden, Jerrold E., Mechanical integrators derived from a discrete variational principle, Physica D, 106, 223-246 (1997) · Zbl 0963.70507
[5] Marsden, Jerrold E.; Wendlandt, Jeffrey M., Mechanical systems with symmetry, variational principles, and integration algorithms, (Alber, Mark; Hu, Bei; Rosenthal, Joachim, Current and Future Directions in Applied Mathematics (1997), Birkhäuser: Birkhäuser Boston), 219-261, ISBN 978-1-4612-7380-6 · Zbl 0936.70004
[6] Marsden, Jerrold E.; Patrick, George W.; Shkoller, Steve, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys., 199, 351-395 (1998), arXiv:math/9807080 · Zbl 0951.70002
[7] Kouranbaeva, Shinar O.; Shkoller, Steve, A variational approach to second-order multisymplectic field theory, J. Geom. Phys., 25, 333-366 (2000), arXiv:math/9909100 · Zbl 0987.70020
[8] Marsden, Jerrold E.; West, Matthew, Discrete mechanics and variational integrators, Acta Numer., 10, 357-514 (2001) · Zbl 1123.37327
[10] Lew, A.; Marsden, J. E.; Ortiz, M.; West, M., Variational time integrators, Internat. J. Numer. Methods Engrg., 60, 1, 153-212 (2004) · Zbl 1060.70500
[11] Jose, Jorge V.; Saletan, Eugene J., Classical Dynamics: A Contemporary Approach (1998), Cambridge University Press · Zbl 0918.70001
[12] Arnold, Vladimir I., Mathematical Methods of Classical Mechanics (1989), Springer · Zbl 0692.70003
[13] Holm, Darryl D.; Schmah, Tanya; Stoica, Cristina, Geometric Mechanics and Symmetry (2009), Oxford University Press · Zbl 1175.70001
[14] Marsden, Jerrold E.; Ratiu, Tudor S., Introduction to Mechanics and Symmetry (2002), Springer · Zbl 0933.70003
[15] Abraham, Ralph; Marsden, Jerrold E., Foundations of Mechanics (1978), American Mathematical Society, URL http://authors.library.caltech.edu/25029/ · Zbl 0393.70001
[16] Noether, Emmy, Invariante variationsprobleme, Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 235-257 (1918) · JFM 46.0770.01
[17] Kosmann-Schwarzbach, Yvette, The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century (2010), Springer · Zbl 1216.01011
[18] Atherton, Robert W.; Homsy, George M., On the existence and formulation of variational principles for nonlinear differential equations, Stud. Appl. Math., 54, 31-60 (1975) · Zbl 0322.49019
[19] Ibragimov, Nail H., Integrating factors, adjoint equations and lagrangians, J. Math. Anal. Appl., 318, 742-757 (2006) · Zbl 1102.34002
[20] Ibragimov, Nail H., A new conservation theorem, J. Math. Anal. Appl., 333, 311-328 (2007) · Zbl 1160.35008
[21] Ibragimov, Nail H., Quasi-self-adjoint differential equations, Arch. ALGA, 4, 55-60 (2007)
[25] Saunders, David J., The Geometry of Jet Bundles (1989), Cambridge University Press · Zbl 0665.58002
[26] Kolar, Ivan; Slovak, Jan; Michor, Peter W., Natural Operations in Differential Geometry (1993), Springer, URL http://www.emis.de/monographs/KSM/ · Zbl 0782.53013
[27] Olver, Peter J., Equivalence, Invariants and Symmetry (1995), Cambridge University Press · Zbl 0837.58001
[28] Ivancevic, Vladimir G.; Ivancevic, Tijana T., Applied Differential Geometry (2007), World Scientific · Zbl 1126.53001
[29] Campos, Cédric M., Geometric methods in classical field theory and continuous media (2010), Universidad Autónoma de Madrid, (Ph.D. thesis) · Zbl 1330.70084
[31] Marsden, Jerrold E.; Pekarsky, Sergey; Shkoller, Steve; West, Matthew, Variational methods, multisymplectic geometry and continuum mechanics, J. Geom. Phys., 38, 253-284 (2001), arXiv:math/0005034 · Zbl 1007.74018
[32] Lew, Adrian; Marsden, Jerrold E.; Ortiz, Michael; West, Matthew, Asynchronous variational integrators, Arch. Ration. Mech. Anal., 167, 85-146 (2003) · Zbl 1055.74041
[33] Olver, Peter J., Applications of Lie Groups to Differential Equations (1993), Springer · Zbl 0785.58003
[34] Veselov, Alexander P., Integrable discrete-time systems and difference operators, Funct. Anal. Appl., 22, 83-93 (1988) · Zbl 0694.58020
[35] Veselov, Alexander P., Integrable lagrangian correspondences and the factorization of matrix polynomials, Funct. Anal. Appl., 25, 112-122 (1991) · Zbl 0731.58034
[36] Moser, Jürgen; Veselov, Alexander P, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139, 217-243 (1991) · Zbl 0754.58017
[37] Morrison, Philip J., Hamiltonian description of the ideal fluid, Rev. Modern Phys., 70, 467-521 (1998) · Zbl 1205.37093
[38] Abraham, Ralph; Marsden, Jerrold E.; Ratiu, Tudor S., Manifolds, Tensor Analysis and Application (1988), Springer · Zbl 0508.58001
[39] Bampi, F.; Morro, A., The inverse problem of the calculus of variations applied to continuum physics, J. Math. Phys., 23, 2312-2321 (1982) · Zbl 0502.73019
[40] Tonti, Enzo, Variational formulations of nonlinear differential equations, Bulletins de l’Academie Royale des Sciences, des Lettres et des Beaux Arts de Belgique, LV (1969), 137-165, 262-278 · Zbl 0182.11402
[41] Seliger, R. L.; Whitham, G. B., Variational principles in continuum mechanics, Proc. R. Soc. A, 305, 1-25 (1968) · Zbl 0198.57601
[42] Pavlov, Dmitry; Mullen, Patrick; Tong, Yiying; Kanso, Eva; Marsden, Jerrold E.; Desbrun, Mathieu, Structure-preserving discretization of incompressible fluids, Physica D, 240, 443-458 (2011), arXiv:0912.3989 · Zbl 1208.37047
[43] Gawlik, Evan S.; Mullen, Patrick; Pavlov, Dmitry; Marsden, Jerrold E.; Desbrun, Mathieu, Geometric, variational discretization of continuum theories, Physica D, 240, 1724-1760 (2011) · Zbl 1366.37148
[44] Ibragimov, Nail H.; Torrisi, Mariano; Tracinà, Rita, Quasi self-adjoint nonlinear wave equations, J. Phys. A, 43 (2010) · Zbl 1206.35174
[45] Chen, Jing-Bo, Variational integrators and the finite element method, Appl. Math. Comput., 196, 941-958 (2008) · Zbl 1135.65406
[47] Ascher, Uri M.; McLachlan, Robert I., Multisymplectic box schemes and the korteweg-de vries equation, Appl. Numer. Math., 48, 255-269 (2004) · Zbl 1038.65138
[49] Langtangen, Hans Petter, A Primer on Scientific Programming with Python (2014), Springer · Zbl 1302.68001
[50] van der Walt, S.; Colbert, S. C.; Varoquaux, G., The numpy array: A structure for efficient numerical computation, Comput. Sci. Eng., 13, 22-30 (2011), arXiv:1102.1523
[53] Hunter, J. D., Matplotlib: A 2d graphics environment, Comput. Sci. Eng., 9, 90-95 (2007)
[54] Arakawa, Akio, Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part i, J. Comput. Phys., 1, 119-143 (1966) · Zbl 0147.44202
[55] Salmon, Rick; Talley, Lynne D., Generalizations of arakawa’s jacobian, J. Comput. Phys., 83, 247-259 (1989) · Zbl 0672.76002
[57] Behnel, S.; Bradshaw, R.; Citro, C.; Dalcin, L.; Seljebotn, D. S.; Smith, K., Cython: The best of both worlds, Comput. Sci. Eng., 13, 31-39 (2011)
[60] Dalcin, L.; Kler, P.; Paz, R.; Cosimo, A., Parallel distributed computing using python, Adv. Water Resour., 34, 1124-1139 (2011)
[62] Li, Xiaoye S., An overview of SuperLU: algorithms, implementation, and user interface, ACM Trans. Math. Softw., 31, 302-325 (2005) · Zbl 1136.65312
[63] Nielsen, A. H.; Juul Rasmussen, J., Formation and temporal evolution of the lamb-dipole, Phys. Fluids, 9, 982-991 (1997) · Zbl 1185.76503
[64] Deville, M. O.; Fischer, P. F.; Mund, E. H., High-Order Methods for Incompressible Fluid Flow (2002), Cambridge University Press · Zbl 1007.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.