×

Symmetry, pulson solution, and conservation laws of the Holm-Hone equation. (English) Zbl 1418.35081

Summary: In this paper, we focus on the Holm-Hone equation which is a fifth-order generalization of the Camassa-Holm equation. It was shown that this equation is not integrable due to the nonexistence of a suitable Lagrangian or bi-Hamiltonian structure and negative results from Painlevé analysis and the Wahlquist-Estabrook method. We mainly study its symmetry properties, travelling wave solutions, and conservation laws. The symmetry group and its one-dimensional optimal system are given. Furthermore, preliminary classifications of its symmetry reductions are investigated. Also we derive some solitary pattern solutions and nonanalytic first-order pulson solution via the ansatz-based method. Finally, some conservation laws for the fifth-order equation are presented.

MSC:

35G20 Nonlinear higher-order PDEs
35B06 Symmetries, invariants, etc. in context of PDEs
35C07 Traveling wave solutions

Software:

GeM

References:

[1] Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Physical Review Letters, 71, 11, 1661-1664 (1993) · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[2] Camassa, R.; Holm, D. D.; Hyman, J. M., A new integrable shallow water equation, Advances in Applied Mechanics, 31, 1-33 (1994) · Zbl 0808.76011 · doi:10.1016/S0065-2156(08)70254-0
[3] Fuchssteiner, B.; Fokas, A. S., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D: Nonlinear Phenomena, 4, 1, 47-66 (1981/82) · Zbl 1194.37114 · doi:10.1016/0167-2789(81)90004-X
[4] Fuchssteiner, B., Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Physica D: Nonlinear Phenomena, 95, 3-4, 229-243 (1996) · Zbl 0900.35345 · doi:10.1016/0167-2789(96)00048-6
[5] Lenells, J., Conservation laws of the Camassa-Holm equation, Journal of Physics A: Mathematical and General, 38, 4, 869-880 (2005) · Zbl 1076.35100 · doi:10.1088/0305-4470/38/4/007
[6] Alber, M. S.; Camassa, R.; Holm, D. D.; Marsden, J. E., The geometry of peaked solitons and billiard solutions of a class of integrable PDEs, Letters in Mathematical Physics, 32, 2, 137-151 (1994) · Zbl 0808.35124 · doi:10.1007/BF00739423
[7] Constantin, A.; Strauss, W. A., Stability of peakons, Communications on Pure and Applied Mathematics, 53, 5, 603-610 (2000) · Zbl 1049.35149 · doi:10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L
[8] Misiolek, G., A shallow water equation as a geodesic flow on the Bott-Virasoro group, Journal of Geometry and Physics, 24, 3, 203-208 (1998) · Zbl 0901.58022 · doi:10.1016/S0393-0440(97)00010-7
[9] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Mathematica, 181, 2, 229-243 (1998) · Zbl 0923.76025 · doi:10.1007/BF02392586
[10] Constantin, A.; Molinet, L., Global weak solutions for a shallow water equation, Communications in Mathematical Physics, 211, 1, 45-61 (2000) · Zbl 1002.35101 · doi:10.1007/s002200050801
[11] Constantin, A., On the scattering problem for the Camassa-Holm equation, Proceedings of the Royal Society A Mathematical, Physical and Engineering Sciences, 457, 953-970 (2001) · Zbl 0999.35065 · doi:10.1098/rspa.2000.0701
[12] Qiao, Z., The Camassa-Holm hierarchy, \(N\)-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold, Communications in Mathematical Physics, 239, 1-2, 309-341 (2003) · Zbl 1020.37046 · doi:10.1007/s00220-003-0880-y
[13] Kalisch, H.; Lenells, J., Numerical study of traveling-wave solutions for the Camassa-Holm equation, Chaos, Solitons and Fractals, 25, 2, 287-298 (2005) · Zbl 1136.35448 · doi:10.1016/j.chaos.2004.11.024
[14] Wazwaz, A.-M., A class of nonlinear fourth order variant of a generalized Camassa-Holm equation with compact and noncompact solutions, Applied Mathematics and Computation, 165, 2, 485-501 (2005) · Zbl 1070.35044 · doi:10.1016/j.amc.2004.04.029
[15] Coclite, G. M.; Holden, H.; Karlsen, K. H., Well-posedness of higher-order Camassa-Holm equations, Journal of Differential Equations, 246, 3, 929-963 (2009) · Zbl 1186.35003 · doi:10.1016/j.jde.2008.04.014
[16] Tang, S.; Xiao, Y.; Wang, Z., Travelling wave solutions for a class of nonlinear fourth order variant of a generalized Camassa-Holm equation, Applied Mathematics and Computation, 210, 1, 39-47 (2009) · Zbl 1163.35479 · doi:10.1016/j.amc.2008.10.041
[17] Liu, J.; Qiao, Z., Fifth order Camassa-Holm model with pseudo-peakons and multi-peakons, International Journal of Mathematical Physics, 105, 12, 179-185 (2018)
[18] Holm, D. D.; Hone, A. N. W., On the non-integrability of a fifth order equation with integrable two-body dynamics, Theoretical and Mathematical Physics, 137, 1, 1459-1471 (2003) · Zbl 1178.37104
[19] Popov, S. P., Numerical study of peakons and k-solitons of the Camassa-Holm and Holm-Hone equations, Computational Mathematics and Mathematical Physics, 51, 7, 1231-1238 (2011) · Zbl 1249.35279 · doi:10.1134/S0965542511070153
[20] Ma, W. X.; Chen, M., Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras, Journal of Physics A: Mathematical and General, 39, 34, 10787-10801 (2006) · Zbl 1104.70011 · doi:10.1088/0305-4470/39/34/013
[21] Ramani, A.; Dorizzi, B.; Grammaticos, B., Painleve’ conjecture revisited, Physical Review Letters, 49, 21, 1539-1541 (1982) · doi:10.1103/PhysRevLett.49.1539
[22] Wahlquist, H. D.; Estabrook, F. B., Prolongation structures of nonlinear evolution equations, Journal of Mathematical Physics, 16, 1-7 (1975) · Zbl 0298.35012 · doi:10.1063/1.522396
[23] Lie, S.; Engel, F., Theorie Der Transformationsgruppen (1970), New York, NY, USA: Chelsea Pub. Co, New York, NY, USA · Zbl 0248.22009
[24] Bluman, G. W.; Cole, J. D., Symmetry and Integration Methods for Differential Equations (2002), Berlin, Germany: Springer, Berlin, Germany · Zbl 1013.34004
[25] Olver, P. J., Applications of Lie Groups to Differential Equations, 107 (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0785.58003
[26] Bluman, G. W.; Cheviakov, A. F.; Anco, S. C., Applications of Symmetry Methods to Partial Differential Equations. Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168 (2010), New York, NY, USA: Springer, New York, NY, USA · Zbl 1223.35001 · doi:10.1007/978-0-387-68028-6
[27] Ibragimov, N. H., Transformation Groups Applied to Mathematical Physics (2013), Beijing, China: Higher Education Press, Beijing, China · Zbl 1301.34050
[28] Cheviakov, A. F., GeM software package for computation of symmetries and conservation laws of differential equations, Computer Physics Communications, 176, 1, 48-61 (2007) · Zbl 1196.34045 · doi:10.1016/j.cpc.2006.08.001
[29] Wazwaz, A.-M., New compact and noncompact solutions for two variants of a modified Camassa-Holm equation, Applied Mathematics and Computation, 163, 3, 1165-1179 (2005) · Zbl 1072.35581 · doi:10.1016/j.amc.2004.06.005
[30] Wazwaz, A. M., Peakons, kinks, compactons and solitary patterns solutions for a family of Camassa-Holm equations by using new hyperbolic schemes, Applied Mathematics and Computation, 182, 1, 412-424 (2006) · Zbl 1106.65109 · doi:10.1016/j.amc.2006.04.002
[31] Anco, S. C.; Bluman, G., Direct construction of conservation laws from field equations, Physical Review Letters, 78, 15, 2869-2873 (1997) · Zbl 0948.58015 · doi:10.1103/PhysRevLett.78.2869
[32] Anco, S. C.; Bluman, G., Direct construction method for conservation laws of partial differential equations part II: general treatment, European Journal of Applied Mathematics, 13, 5, 567-585 (2002) · Zbl 1034.35071 · doi:10.1017/S0956792501004661
[33] Anco, S. C., Generalization of Noether’s theorem in modern form to non-variational partial differential equations, Recent progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science, 79, 119-182 (2017), Fields Institute Communications · Zbl 1430.35009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.