×

Wavelet sparse regularization for manifold-valued data. (English) Zbl 1457.94026

Summary: In this paper, we consider the sparse regularization of manifold-valued data with respect to an interpolatory wavelet/multiscale transform. We propose and study variational models for this task and provide results on their well-posedness. We present algorithms for a numerical realization of these models in the manifold setup. Further, we provide experimental results to show the potential of the proposed schemes for applications.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
90C90 Applications of mathematical programming
65T60 Numerical methods for wavelets
53B99 Local differential geometry
53C35 Differential geometry of symmetric spaces
65K10 Numerical optimization and variational techniques

Software:

CircStat; Manopt; Camino

References:

[1] P.-A. Absil, R. Mahony, and R. Sepulchre, Riemannian geometry of Grassmann manifolds with a view on algorithmic computation, Acta Appl. Math., 80 (2004), pp. 199-220. · Zbl 1052.65048
[2] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, 2009. · Zbl 1147.65043
[3] Y. Adato, T. Zickler, and O. Ben-Shahar, A polar representation of motion and implications for optical flow, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 1145-1152.
[4] B. Afsari, Riemannian \(L^p\) center of mass: Existence, uniqueness, and convexity, Proc. Amer. Math. Soc., 139 (2011), pp. 655-673. · Zbl 1220.53040
[5] B. Afsari, R. Tron, and R. Vidal, On the convergence of gradient descent for finding the Riemannian center of mass, SIAM J. Control Optim., 51 (2013), pp. 2230-2260, https://doi.org/10.1137/12086282X. · Zbl 1285.90031
[6] A. Alexander, J. Lee, M. Lazar, R. Boudos, M. DuBray, T. Oakes, J. Miller, J. Lu, E.-K. Jeong, W. McMahon, E. Bigler, and J. Lainhart, Diffusion tensor imaging of the corpus callosum in autism, Neuroimage, 34 (2007), pp. 61-73.
[7] M. Arnaudon, F. Barbaresco, and L. Yang, Medians and means in Riemannian geometry: Existence, uniqueness and computation, in Matrix Information Geometry, Springer, 2013, pp. 169-197. · Zbl 1319.58008
[8] D. Azagra and J. Ferrera, Proximal calculus on Riemannian manifolds, Mediterr. J. Math., 2 (2005), pp. 437-450. · Zbl 1167.49307
[9] M. Bačák, The proximal point algorithm in metric spaces, Israel J. Math., 194 (2013), pp. 689-701. · Zbl 1278.49039
[10] M. Bačák, Computing medians and means in Hadamard spaces, SIAM J. Optim., 24 (2014), pp. 1542-1566, https://doi.org/10.1137/140953393. · Zbl 1306.49046
[11] M. Bačák, Convex Analysis and Optimization in Hadamard Spaces, de Gruyter, 2014. · Zbl 1299.90001
[12] M. Bačák, R. Bergmann, G. Steidl, and A. Weinmann, A second order nonsmooth variational model for restoring manifold-valued images, SIAM J. Sci. Comput., 38 (2016), pp. A567-A597, https://doi.org/10.1137/15M101988X. · Zbl 1382.94007
[13] P. Basser, J. Mattiello, and D. LeBihan, MR diffusion tensor spectroscopy and imaging, Biophys. J., 66 (1994), pp. 259-267.
[14] S. Basu, T. Fletcher, and R. Whitaker, Rician noise removal in diffusion tensor MRI, in Medical Image Computing and Computer-Assisted Intervention 2006, Springer, 2006, pp. 117-125.
[15] M. Baust, L. Demaret, M. Storath, N. Navab, and A. Weinmann, Total variation regularization of shape signals, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 2075-2083.
[16] M. Baust, A. Weinmann, M. Wieczorek, T. Lasser, M. Storath, and N. Navab, Combined tensor fitting and TV regularization in diffusion tensor imaging based on a Riemannian manifold approach, IEEE Trans. Medical Imaging, 35 (2016), pp. 1972-1989.
[17] P. Berens, CircStat: A MATLAB toolbox for circular statistics, J. Statist. Softw., 31 (2009), pp. 1-21.
[18] R. Bergmann, R. H. Chan, R. Hielscher, J. Persch, and G. Steidl, Restoration of manifold-valued images by half-quadratic minimization, Inverse Problems Imaging, 10 (2016), pp. 281-304. · Zbl 1348.65097
[19] R. Bergmann, F. Laus, G. Steidl, and A. Weinmann, Second order differences of cyclic data and applications in variational denoising, SIAM J. Imaging Sci., 7 (2014), pp. 2916-2953, https://doi.org/10.1137/140969993. · Zbl 1309.65022
[20] B. Berkels, P. Fletcher, B. Heeren, M. Rumpf, and B. Wirth, Discrete geodesic regression in shape space, in International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer, 2013, pp. 108-122.
[21] D. Bertsekas, Incremental proximal methods for large scale convex optimization, Math. Program., 129 (2011), pp. 163-195. · Zbl 1229.90121
[22] R. Bhattacharya and V. Patrangenaru, Large sample theory of intrinsic and extrinsic sample means on manifolds I, Ann. Statist., 31 (2003), pp. 1-29. · Zbl 1020.62026
[23] R. Bhattacharya and V. Patrangenaru, Large sample theory of intrinsic and extrinsic sample means on manifolds II, Ann. Statist., 33 (2005), pp. 1225-1259. · Zbl 1072.62033
[24] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, Manopt, a MATLAB toolbox for optimization on manifolds, J. Mach. Learn. Res., 15 (2014), pp. 1455-1459, http://www.manopt.org. · Zbl 1319.90003
[25] K. Bredies, M. Holler, M. Storath, and A. Weinmann, Total generalized variation for manifold-valued data, SIAM J. Imaging Sci., 11 (2018), pp. 1785-1848, https://doi.org/10.1137/17M1147597. · Zbl 1401.94010
[26] A. Chambolle, R. De Vore, N. Lee, and B. Lucier, Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage, IEEE Trans. Image Process., 7 (1998), pp. 319-335. · Zbl 0993.94507
[27] T. Chan, S. Kang, and J. Shen, Total variation denoising and enhancement of color images based on the CB and HSV color models, J. Visual Commun. Image Representation, 12 (2001), pp. 422-435.
[28] J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Math. Lib. 9, North-Holland, 1975. · Zbl 0309.53035
[29] C. Chefd’Hotel, D. Tschumperlé, R. Deriche, and O. Faugeras, Regularizing flows for constrained matrix-valued images, J. Math. Imaging Vis., 20 (2004), pp. 147-162. · Zbl 1366.94049
[30] A. Cohen, I. Daubechies, and P. Vial, Wavelets on the interval and fast wavelet transforms, Appl. Comput. Harmon. Anal., 1 (1993), pp. 54-81. · Zbl 0795.42018
[31] P. Cook, Y. Bai, S. Nedjati-Gilani, K. Seunarine, M. Hall, G. Parker, and D. Alexander, Camino: Open-source diffusion-MRI reconstruction and processing, in 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, 2006, p. 2759.
[32] D. Cremers and E. Strekalovskiy, Total cyclic variation and generalizations, J. Math. Imaging Vis., 47 (2013), pp. 258-277. · Zbl 1298.94011
[33] G. Deslauriers and S. Dubuc, Symmetric iterative interpolation processes, in Constructive Approximation, Springer, 1989, pp. 49-68. · Zbl 0659.65004
[34] M. do Carmo, Riemannian Geometry, Birkhäuser, 1992.
[35] D. Donoho, Interpolating Wavelet Transforms, preprint, Department of Statistics, Stanford University, 1992.
[36] D. Donoho, De-noising by soft-thresholding, IEEE Trans. Inform. Theory, 41 (1995), pp. 613-627. · Zbl 0820.62002
[37] N. Dyn, D. Levin, and J. Gregory, A 4-point interpolatory subdivision scheme for curve design, Comput. Aided Geom. Design, 4 (1987), pp. 257-268. · Zbl 0638.65009
[38] O. Ferreira and P. Oliveira, Proximal point algorithm on Riemannian manifolds, Optimization, 51 (2002), pp. 257-270. · Zbl 1013.49024
[39] R. Ferreira, J. Xavier, J. Costeira, and V. Barroso, Newton algorithms for Riemannian distance related problems on connected locally symmetric manifolds, IEEE J. Selected Topics Signal Process., 7 (2013), pp. 634-645.
[40] P. Fletcher and S. Joshi, Riemannian geometry for the statistical analysis of diffusion tensor data, Signal Process., 87 (2007), pp. 250-262. · Zbl 1186.94126
[41] P. Fletcher, C. Lu, S. Pizer, and S. Joshi, Principal geodesic analysis for the study of nonlinear statistics of shape, IEEE Trans. Medical Imaging, 23 (2004), pp. 995-1005.
[42] J. Foong, M. Maier, C. Clark, G. Barker, D. Miller, and M. Ron, Neuropathological abnormalities of the corpus callosum in schizophrenia: A diffusion tensor imaging study, J. Neurology Neurosurgery Psychiatry, 68 (2000), pp. 242-244.
[43] M. Giaquinta, G. Modica, and J. Souček, Variational problems for maps of bounded variation with values in \(S^1\), Calc. Var. Partial Differential Equations, 1 (1993), pp. 87-121. · Zbl 0810.49040
[44] M. Giaquinta and D. Mucci, The BV-energy of maps into a manifold: Relaxation and density results, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 5 (2006), pp. 483-548. · Zbl 1150.49020
[45] M. Giaquinta and D. Mucci, Maps of bounded variation with values into a manifold: Total variation and relaxed energy, Pure Appl. Math. Quart., 3 (2007), pp. 513-538. · Zbl 1347.49076
[46] P. Grohs, Smoothness analysis of subdivision schemes on regular grids by proximity, SIAM J. Numer. Anal., 46 (2008), pp. 2169-2182, https://doi.org/10.1137/060669759. · Zbl 1173.41008
[47] P. Grohs, A general proximity analysis of nonlinear subdivision schemes, SIAM J. Math. Anal., 42 (2010), pp. 729-750, https://doi.org/10.1137/09075963X. · Zbl 1214.41005
[48] P. Grohs, Stability of manifold-valued subdivision schemes and multiscale transformations, Constr. Approx., 32 (2010), pp. 569-596. · Zbl 1205.41013
[49] P. Grohs, H. Hardering, and O. Sander, Optimal a priori discretization error bounds for geodesic finite elements, Found. Comput. Math., 15 (2015), pp. 1357-1411. · Zbl 1331.65153
[50] P. Grohs and S. Hosseini, \( \varepsilon \)-subgradient algorithms for locally Lipschitz functions on Riemannian manifolds, Adv. Comput. Math., 42 (2016), pp. 333-360. · Zbl 1338.49029
[51] P. Grohs and M. Sprecher, Total variation regularization on Riemannian manifolds by iteratively reweighted minimization, Inf. Inference, 5 (2016), pp. 353-378. · Zbl 1382.94013
[52] P. Grohs and J. Wallner, Interpolatory wavelets for manifold-valued data, Appl. Comput. Harmon. Anal., 27 (2009), pp. 325-333. · Zbl 1171.65451
[53] B. Han, Computing the smoothness exponent of a symmetric multivariate refinable function, SIAM J. Matrix Anal. Appl., 24 (2003), pp. 693-714, https://doi.org/10.1137/S0895479801390868. · Zbl 1032.42036
[54] B. Han, Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix, Adv. Comput. Math., 24 (2006), pp. 375-403. · Zbl 1096.65137
[55] B. Han and R.-Q. Jia, Multivariate refinement equations and convergence of subdivision schemes, SIAM J. Math. Anal., 29 (1998), pp. 1177-1199, https://doi.org/10.1137/S0036141097294032. · Zbl 0915.65143
[56] S. Hawe, M. Seibert, and M. Kleinsteuber, Separable dictionary learning, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 438-445.
[57] H. Johansen-Berg and T. Behrens, Diffusion MRI: From Quantitative Measurement to In-vivo Neuroanatomy, Academic Press, 2009.
[58] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math., 30 (1977), pp. 509-541. · Zbl 0354.57005
[59] W. Kendall, Probability, convexity, and harmonic maps with small image \textupI: Uniqueness and fine existence, Proc. London Math. Soc. (3), 61 (1990), pp. 371-406. · Zbl 0675.58042
[60] R. Kimmel and N. Sochen, Orientation diffusion or how to comb a porcupine, J. Vis. Commun. Image Representation, 13 (2002), pp. 238-248.
[61] R. Lai and S. Osher, A splitting method for orthogonality constrained problems, J. Sci. Comput., 58 (2014), pp. 431-449. · Zbl 1296.65087
[62] J. Lellmann, E. Strekalovskiy, S. Koetter, and D. Cremers, Total variation regularization for functions with values in a manifold, in International Conference on Computer Vision (ICCV), 2013, pp. 2944-2951.
[63] K. Mardia and P. Jupp, Directional Statistics, Wiley Ser. Probab. Statist. 494, John Wiley & Sons, 2009. · Zbl 0935.62065
[64] D. Massonnet and K. Feigl, Radar interferometry and its application to changes in the earth’s surface, Rev. Geophys., 36 (1998), pp. 441-500.
[65] P. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007), pp. 74-113. · Zbl 1116.58007
[66] J.-J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C. R. Acad. Sci. Paris, 255 (1962), pp. 2897-2899. · Zbl 0118.10502
[67] J. Oller and J. Corcuera, Intrinsic analysis of statistical estimation, Ann. Statist., 23 (1995), pp. 1562-1581. · Zbl 0843.62027
[68] X. Pennec, Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements, J. Math. Imaging Vis., 25 (2006), pp. 127-154. · Zbl 1478.94072
[69] X. Pennec, P. Fillard, and N. Ayache, A Riemannian framework for tensor computing, Int. J. Comput. Vis., 66 (2006), pp. 41-66. · Zbl 1287.53031
[70] C. Rao, Information and accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc., 37 (1945), pp. 81-91. · Zbl 0063.06420
[71] R. Rezakhaniha, A. Agianniotis, J. Schrauwen, A. Griffa, D. Sage, C. Bouten, F. Van de Vosse, M. Unser, and N. Stergiopulos, Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy, Biomech. Model. Mechanobiol., 11 (2012), pp. 461-473.
[72] F. Rocca, C. Prati, and A. Ferretti, An overview of SAR interferometry, in Proceedings of the 3rd ERS Symposium on Space at the Service of our Environment, Florence, 1997.
[73] G. Rosman, M. Bronstein, A. Bronstein, A. Wolf, and R. Kimmel, Group-valued regularization framework for motion segmentation of dynamic non-rigid shapes, in Scale Space and Variational Methods in Computer Vision, Springer, 2012, pp. 725-736.
[74] O. Sander, Geodesic finite elements of higher order, IMA J. Numer. Anal., 36 (2015), pp. 238-266. · Zbl 1338.65172
[75] H. Schultz, A circular median filter approach for resolving directional ambiguities in wind fields retrieved from spaceborne scatterometer data, J. Geophys. Res. Oceans, 95 (1990), pp. 5291-5303.
[76] M. Spivak, Differential Geometry, Publish or Perish, Berkeley, 1975. · Zbl 0306.53001
[77] A. Stefanoiu, A. Weinmann, M. Storath, N. Navab, and M. Baust, Joint segmentation and shape regularization with a generalized forward-backward algorithm, IEEE Trans. Image Process., 25 (2016), pp. 3384-3394. · Zbl 1408.94613
[78] M. Storath and A. Weinmann, Fast median filtering for phase or orientation data, IEEE Trans. Pattern Anal. Mach. Intell., 40 (2018), pp. 639-652.
[79] M. Storath and A. Weinmann, Variational Regularization of Inverse Problems for Manifold-Valued Data, preprint, https://arxiv.org/abs/1804.10432, 2018. · Zbl 1528.65030
[80] M. Storath, A. Weinmann, and M. Unser, Exact algorithms for \(L^1\)-TV regularization of real-valued or circle-valued signals, SIAM J. Sci. Comput., 38 (2016), pp. A614-A630, https://doi.org/10.1137/15M101796X. · Zbl 1382.94029
[81] M. Storath, A. Weinmann, and M. Unser, Jump-penalized least absolute values estimation of scalar or circle-valued signals, Inf. Inference, 6 (2017), pp. 225-245. · Zbl 1383.62124
[82] E. Strekalovskiy and D. Cremers, Total variation for cyclic structures: Convex relaxation and efficient minimization, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011, pp. 1905-1911.
[83] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), pp. 267-288. · Zbl 0850.62538
[84] R. Tron, B. Afsari, and R. Vidal, Riemannian consensus for manifolds with bounded curvature, IEEE Trans. Automat. Control, 58 (2013), pp. 921-934. · Zbl 1369.93452
[85] D. Tschumperlé and R. Deriche, Diffusion tensor regularization with constraints preservation, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2001, pp. I948-I953.
[86] I. Ur Rahman, I. Drori, V. C. Stodden, D. L. Donoho, and P. Schröder, Multiscale representations for manifold-valued data, Multiscale Model. Simul., 4 (2005), pp. 1201-1232, https://doi.org/10.1137/050622729. · Zbl 1236.65166
[87] L. A. Vese and S. J. Osher, Numerical methods for \(p\)-harmonic flows and applications to image processing, SIAM J. Numer. Anal., 40 (2002), pp. 2085-2104, https://doi.org/10.1137/S0036142901396715. · Zbl 1035.65065
[88] J. Wallner and N. Dyn, Convergence and C1 analysis of subdivision schemes on manifolds by proximity, Comput. Aided Geom. Design, 22 (2005), pp. 593-622. · Zbl 1083.65023
[89] J. Wallner, E. Nava Yazdani, and A. Weinmann, Convergence and smoothness analysis of subdivision rules in Riemannian and symmetric spaces, Adv. Comput. Math., 34 (2011), pp. 201-218. · Zbl 1211.41005
[90] J. Weaver, Y. Xu, D. Healy, and L. Cromwell, Filtering noise from images with wavelet transforms, Magnetic Resonance in Medicine, 21 (1991), pp. 288-295.
[91] A. Weinmann, Nonlinear subdivision schemes on irregular meshes, Constr. Approx., 31 (2010), pp. 395-415. · Zbl 1247.65018
[92] A. Weinmann, Interpolatory multiscale representation for functions between manifolds, SIAM J. Math. Anal., 44 (2012), pp. 162-191, https://doi.org/10.1137/100803584. · Zbl 1243.65026
[93] A. Weinmann, Subdivision schemes with general dilation in the geometric and nonlinear setting, J. Approx. Theory, 164 (2012), pp. 105-137. · Zbl 1234.41013
[94] A. Weinmann, L. Demaret, and M. Storath, Total variation regularization for manifold-valued data, SIAM J. Imaging Sci., 7 (2014), pp. 2226-2257, https://doi.org/10.1137/130951075. · Zbl 1309.65071
[95] A. Weinmann, L. Demaret, and M. Storath, Mumford-Shah and Potts regularization for manifold-valued data, J. Math. Imaging Vis., 55 (2016), pp. 428-445. · Zbl 1344.49055
[96] G. Xie and T. P.-Y. Yu, Smoothness equivalence properties of general manifold-valued data subdivision schemes, Multiscale Model. Simul., 7 (2008), pp. 1073-1100, https://doi.org/10.1137/080718723. · Zbl 1179.26006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.