×

Explicit construction of symmetric orthogonal wavelet frames in \(L^2(\mathbb R^s)\). (English) Zbl 1194.42044

Summary: Recently, some researchers propose the concept of orthogonal wavelet frames, which are useful for multiple access communication systems. In this article, we first give two explicit algorithms for constructing paraunitary symmetric matrices (p.s.m. for short), whose entries are symmetric or antisymmetric Laurent polynomials. We also give two algorithms for constructing orthogonal wavelet frames from existing tight or dual wavelet frames in \(L^2(\mathbb R^s)\). The constructed orthogonal wavelet frames are also tight or dual ones. Furthermore, based on the constructed p.s.m. and the existing symmetric tight (dual) wavelet frames, we can obtain symmetric orthogonal (s.o. for short) tight (dual) wavelet frames in \(L^2(\mathbb R^s)\). From the constructed s.o. wavelet frames in \(L^2(\mathbb R^s)\), we can obtain s.o. wavelet frames in \(L^2(\mathbb R^m)\) by the projection method, where \(m\leq s\). To illustrate our results, we construct s.o. wavelet frames in \(L^2(\mathbb R)\) and \(L^2(\mathbb R^2)\) from the quadratic B-spline \(B_{3}(x)\). Especially, in Example 2, we obtain nonseparable tight \(2I_{2}\)-wavelet frames in \(L^2(\mathbb R^2)\) from a separable tight \(2I_{2}\)-wavelet frame constructed by tensor product.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
65T60 Numerical methods for wavelets
Full Text: DOI

References:

[1] Bhatt, G.; Johnson, B. D.; Weber, E., Orthogonal wavelet frames and vector-valued wavelet transforms, Appl. Comput. Harmon. Anal., 23, 2, 215-234 (2007) · Zbl 1136.42026
[2] Bownik, M., A characterization of affine dual frames in \(L^2(R^n)\), Appl. Comput. Harmon. Anal., 8, 2, 203-221 (2000) · Zbl 0961.42018
[3] Chui, C. K.; He, W., Compactly supported tight frames associated with refinable functions, Appl. Comput. Harmon. Anal., 8, 293-319 (2000) · Zbl 0948.42022
[4] Ehler, M., On multivariate compactly supported bi-frames, J. Fourier Anal. Appl., 13, 5, 511-532 (2007) · Zbl 1141.42021
[5] Ehler, M., Compactly supported multivariate pairs of dual wavelet frames obtained by convolution, Int. J. Wavelets Multiresolut. Inf. Process., 6, 2, 183-208 (2008) · Zbl 1142.42320
[6] Ehler, M.; Han, B., Wavelet bi-frames with few generators from multivariate refinable functions, Appl. Comput. Harmon. Anal., 25, 3, 407-414 (2008) · Zbl 1221.42062
[7] Goh, S.; Lim, Z.; Shen, Z., Symmetric and antisymmetric tight wavelet frames, Appl. Comput. Harmon. Anal., 20, 3, 411-421 (2006) · Zbl 1106.42027
[8] Han, B., On dual wavelet tight frames, Appl. Comput. Harmon. Anal., 4, 4, 380-413 (1997) · Zbl 0880.42017
[9] Han, B., Projectable multidimensional refinable functions and biorthogonal wavelets, Appl. Comput. Harmon. Anal., 13, 89-102 (2002) · Zbl 1034.42036
[10] Han, B., Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix, J. Comput. Appl. Math., 155, 1, 43-67 (2003) · Zbl 1021.42020
[11] Han, B., Construction of wavelets and framelets by the projection method, Int. J. Appl. Math. Appl., 1, 1-40 (2008) · Zbl 1148.42012
[12] Han, B.; Ji, H., Compactly supported orthonormal complex wavelets with dilation 4 and symmetry, Appl. Comput. Harmon. Anal., 26, 422-431 (2009) · Zbl 1158.42309
[13] Kim, H.; Kim, R.; Lim, J.; Shen, Z., A pair of orthogonal frames, J. Approx. Theory, 147, 196-204 (2007) · Zbl 1116.42009
[14] Li, Y. F.; Yang, S. Z., Construction of paraunitary symmetric matrix and parametrization of symmetric and orthogonal multiwavelets filter banks, Acta Math. Sinica (Chin. Ser.), 53, 2 (2010) · Zbl 1224.42095
[15] Petukhov, A., Symmetric framelets, Constr. Approx., 19, 309-328 (2003) · Zbl 1037.42038
[16] Petukhov, A., Construction of symmetric orthogonal bases of wavelets and tight frames with integer dilation factor, Appl. Comput. Harmon. Anal., 17, 198-210 (2004) · Zbl 1066.42026
[17] Ron, A.; Shen, Z., Affine systems in \(L^2(R^n)\): The analysis of the analysis operator, J. Funct. Anal., 148, 2, 380-413 (1997)
[18] Ron, A.; Shen, Z., Affine systems in \(L^2(R^n)\): Dual systems, J. Funct. Anal., 3, 5, 617-637 (1997) · Zbl 0904.42025
[19] Selesnick, I. W.; Abdelnour, A. F., Symmetric wavelet tight frames with two generators, Appl. Comput. Harmon. Anal., 17, 211-225 (2004) · Zbl 1066.42027
[20] Weber, E., Orthogonal frames of translates, Appl. Comput. Harmon. Anal., 17, 69-90 (2004) · Zbl 1042.42038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.