×

Minimum uncertainty wavelets in non-relativistic super-symmetric quantum mechanics. (English) Zbl 1310.81077

Summary: We consider the connection to the harmonic oscillator, super-symmetric quantum mechanics (SUSY-QM) and coherent states of the recently derived constrained Heisenberg “minimum uncertainty” (\(\mu \)-) wavelets. We analyze several new types of raising and lowering operators,which also can be viewed as arising from a (non-unitary) similarity transformation of the Harmonic Oscillator Hamiltonian and ladder operators. We show that these new ladder operators lead to a new SUSY formalism for harmonic oscillation, so that the \(\mu \)-wavelets naturally manifest SUSY properties. Using these new ladder operators, we construct coherent and supercoherent states for the oscillator. In the discussion, we consider possible implications of similarity transformations for quantum mechanics. In an appendix we consider the classical limit of the \(\mu \)-wavelet oscillator.

MSC:

81Q60 Supersymmetry and quantum mechanics
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
Full Text: DOI

References:

[1] Weinberg S.: The Quantum Theory of Fields, vol. 3: Supersymmetry. Cambridge University Press, Cambridge (1999) · Zbl 0994.81057
[2] Baer H., Tata X.: Weak Scale Supersymmetry: From Superfields to Scattering Events. Cambridge University Press, Cambridge (2006) · Zbl 1243.81012
[3] Wess J., Bagger J.: Supersymmetry and Supergravity. Princeton University Press, Princeton (1992)
[4] Junker G.: Supersymmetric Methods in Quantum and Statistical Mechanics. Springer, NY (1996) · Zbl 0867.00011
[5] Copper F., Khare A., Sukhatme U.: Supersymmetry in Quantum Mechanics. World Scientific Publishing Co., Singapore (2001) · Zbl 0988.81001
[6] Kouri D.J., Markovich T., Maxwell N., Bodmann B.G.: J. Phys. Chem. A 13, 7698 (2009) · doi:10.1021/jp902791d
[7] E.R. Bittner, J. Maddox, D.J. Kouri, J. Phys. Chem. A, (in press)
[8] D.J. Kouri, T. Markovich, N. Maxwell, E.R. Bittner, B.G. Bodmann, J. Phys. Chem. A, submitted
[9] D.J. Kouri, E.R. Bittner, Super-symmetric hierarchy for high dimensional systems. (In preparation)
[10] Schrödinger E.: Further studies on solving eigenvalue problems by factorization. Prod. Roy. Irish Acad. 46 A, 183–206 (1941) · Zbl 0063.06818
[11] Schrödinger E.: Factorization of the hypergeometric equation. Prod. Roy. Irish Acad 47 A, 53–54 (1941) · Zbl 0063.06821
[12] Infeld L., Hull T.E.: The factorization method. Rev. Mod. Phys. 23, 21–68 (1951) · Zbl 0043.38602 · doi:10.1103/RevModPhys.23.21
[13] Dirac P.A.M.: Proc. Roy. Soc. (London) A117, 610 (1927)
[14] Glauber R.J.: Phys. Rev. 131, 2766 (1963) · Zbl 1371.81166 · doi:10.1103/PhysRev.131.2766
[15] Klauder J.R., Skagerstam B.-S.: Coherent States. World Scientific, Singapore (1985)
[16] Perelomov A.M.: Generalized Coherent States and Their Applications. Springer, Berlin (1986) · Zbl 0605.22013
[17] Hong-Yi F., VanderLinde J.: J. Phys. A: Math. Gen. 24, 252 (1991)
[18] Wolf K.B.: J. Math. Phys. 15, 1295 (1974) · Zbl 0292.44005 · doi:10.1063/1.1666811
[19] Goldstein H.: Classical Mechanics. Addison-Wesley Publishing company, Reading (1981) · Zbl 0043.18001
[20] C. Carathèodory, Calculus of Variations and Partial Differential Equations of the First Order, 3rd edn. (American Mathematical Society, February 1, 1999)
[21] Rund H.: Hamiltonian-Jacobi Theory in the Calculus of Variations. R. E. Krieger Pub., Huntington, N.Y. Co (1973) · Zbl 0264.49016
[22] Abraham R.: Foundations of Mechanics. W.A. Benjamin, Inc, New York (1967) · Zbl 0158.42901
[23] Riesz F., Sz.-Nagy B.: Functional Analysis. Dover Publications, NY (1990) · Zbl 0732.47001
[24] Mallat S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA (1998) · Zbl 0937.94001
[25] Reed M., Simon B.: Methods of Modern Mathematical Physics: Functional Analysis I, Revised and enlarged edition. Academic Press, NY (1980) · Zbl 0459.46001
[26] Bender C.M., Boettcher S.: Phys. Rev. Lett. 80, 5243 (1998) · Zbl 0947.81018 · doi:10.1103/PhysRevLett.80.5243
[27] Bender C.M., Boettcher S., Meisenger P.N.: J. Math. Phys. 40, 2201 (1999) · Zbl 1057.81512 · doi:10.1063/1.532860
[28] A. Mostafazadeh, J. Math. Phys. 43, 3944 (2002) and references therein
[29] Bender C.M., Chen J.-H., Milton K.A.: J. Phys. A: Math. Gen. 39, 1657 (2006) · Zbl 1085.81010 · doi:10.1088/0305-4470/39/7/010
[30] Sinha A., Roy P.: J. Phys. A: Math. Gen. 39, L377 (2006) · Zbl 1122.81051 · doi:10.1088/0305-4470/39/23/L01
[31] Mostafazadeh A.: J. Math. Phys 44, 974 (2003) · Zbl 1061.81076 · doi:10.1063/1.1539304
[32] Hoffman D.K., Kouri D.J.: Hierarchy of local minimum solutions of Heisenberg’s uncertainty principle. Phys. Rev. Lett. 85, 5263 (2000) · Zbl 1369.81013 · doi:10.1103/PhysRevLett.85.5263
[33] Hoffman D.K., Kouri D.J.: Hierarchy of local minimum solutions of Heisenberg’s uncertainty principle. Phys. Rev. A 65, 052106-1–052106-13 (2002) · doi:10.1103/PhysRevA.65.052106
[34] Kouri D.J., Papadakis M., Kakadiaris I., David D.K.: Properties of minimum uncertainty wavelets and their relations to the harmonic oscillator and the coherent states. J. Phys. Chem. A107, 7318 (2003)
[35] Y. Lee, Minimum Uncertainty Wavelets in SUSY Quantum Mechanics, the Theory of Coherent States, the Theory of Strings, and the Fermionic Harmonic Oscillator, Ph.D. thesis, University of Houston, 2005
[36] Witten E.: Nucl. Phys. B 185, 513 (1981) · Zbl 1258.81046 · doi:10.1016/0550-3213(81)90006-7
[37] Aragone C., Zypman F.: J. Phys. A; Math. Gen. 19, 2267 (1985) · Zbl 0626.58041 · doi:10.1088/0305-4470/19/12/014
[38] Fatyga B.W., Kostelecky V.A., Nieto M.M., Traux D.R.: Phys. Rev. D 43, 1403 (1991) · doi:10.1103/PhysRevD.43.1403
[39] Schwabl F.: Quantum Mechanics. Springer, Berlin (2002) · Zbl 1036.81500
[40] De Witt B.: Supermanifolds. Cambridge University Press, Cambridge (1992)
[41] Gilmore R.: Baker-Campbell-Hausdorff formulas. J. Math. Phys. 15, 2090–2092 (1974) · Zbl 0288.17005 · doi:10.1063/1.1666587
[42] Lie Groups: Lie Algebras and Some of Their Applications. John Wiley & Sons, New York (1974) · Zbl 0279.22001
[43] D.J. Kouri, Y. Lee, D. K. Hoffman (unpublished)
[44] Caldeira A.O., Leggett A.J.: Phys. Rev. Lett. 46, 211 (1981) · doi:10.1103/PhysRevLett.46.211
[45] S. Mivet, D. J. Kouri, in progress
[46] Herman M.F., Kluk E.: Chem. Phys. 91, 27 (1984) · doi:10.1016/0301-0104(84)80039-7
[47] Siegman A.E.: Lasers. University Science Books, Mill Valley, CA (1986)
[48] Siegman A.E.: Hermite-Gaussian functions of complex argument as optical-beam eigenfunctions. J. Opt. Soc. Am. 63, 1093 (1973) · doi:10.1364/JOSA.63.001093
[49] F. Pampaloni, J. Enderlein, Am. J. Phys. (submitted)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.