×

Frame set for Gabor systems with Haar window. (English) Zbl 1537.42053

Summary: We describe the full structure of the frame set for the Gabor system \(\mathcal{G}(g; \alpha, \beta) := \{e^{-2 \pi im \beta \cdot} g(\cdot - n \alpha) : m, n \in \mathbb{Z}\}\) with the window being the Haar function \(g = - \chi_{[-1/2, 0)} + \chi_{[0, 1/2)}\). This is the first compactly supported window function for which the frame set is represented explicitly.
The strategy of this paper is to introduce the piecewise linear transformation \(\mathcal{M}\) on the unit circle, and to provide a complete characterization of structures for its (symmetric) maximal invariant sets. This transformation is related to the famous three gap theorem of Steinhaus which may be of independent interest. Furthermore, a classical criterion on Gabor frames is improved, which allows us to establish a necessary and sufficient condition for the Gabor system \(\mathcal{G}(g; \alpha, \beta)\) to be a frame, i.e., the symmetric invariant set of the transformation \(\mathcal{M}\) is empty.

MSC:

42C15 General harmonic expansions, frames
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
28D05 Measure-preserving transformations
37A05 Dynamical aspects of measure-preserving transformations
94A20 Sampling theory in information and communication theory

References:

[1] Belov, Yu.; Kulikov, A.; Lyubarskii, Yu., Gabor frames for rational functions, Invent. Math., 231, 431-466, 2023 · Zbl 1512.42044
[2] Casazza, P., The art of frame theory, Taiwan. J. Math., 4, 129-201, 2000 · Zbl 0966.42022
[3] Chaika, J.; Masur, H., The set of non-uniquely ergodic d-IETs has Hausdorff codimension 1/2, Invent. Math., 222, 749-832, 2020 · Zbl 1462.37026
[4] Christensen, O.; Kim, H. O.; Kim, R. Y., Gabor windows supported on [-1, 1] and compactly supported dual windows, Appl. Comput. Harmon. Anal., 28, 89-103, 2010 · Zbl 1177.42029
[5] Christensen, O.; Kim, H. O.; Kim, R. Y., On Gabor frames generated by sign-changing windows and B-splines, Appl. Comput. Harmon. Anal., 39, 534-544, 2015 · Zbl 1333.42052
[6] Dai, X.-R.; Sun, Q., The abc-problem for Gabor systems, Mem. Am. Math. Soc., 24, 1152, 2016 · Zbl 1370.42024
[7] Daubechies, I., The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inf. Theory, 36, 961-1005, 1990 · Zbl 0738.94004
[8] Daubechies, I., Ten Lectures on Wavelets, CBS-NSF Regional Conference Series in Applied Mathematics, vol. 61, 1992, SIAM: SIAM Philadelphia · Zbl 0776.42018
[9] Daubechies, I.; Grossmann, A., Frames in the Bargmann space of entire functions, Commun. Pure Appl. Math., 41, 151-164, 1988 · Zbl 0632.30049
[10] Daubechies, I.; Grossmann, A.; Meyer, Y., Painless nonorthogonal expansions, J. Math. Phys., 27, 1271-1283, 1986 · Zbl 0608.46014
[11] Duffin, R. J.; Schaeffer, A. C., A class of nonharmonic Fourier series, Trans. Am. Math. Soc., 72, 341-366, 1952 · Zbl 0049.32401
[12] Feichtinger, H. G., Modulation spaces on locally compact abelian groups, (Proceedings of “International Conference on Wavelets and Applications” 2002. Proceedings of “International Conference on Wavelets and Applications” 2002, Chennai, India, 2003), 99-140, Updated version of a technical report, University of Vienna, 1983
[13] Feichtinger, H. G.; Kaiblinger, N., Varying the time-frequency lattice of Gabor frames, Trans. Am. Math. Soc., 356, 2001-2023, 2004 · Zbl 1033.42033
[14] Ferenczi, S.; Zamboni, L., Eigenvalues and simplicity of interval exchange transformations, Ann. Sci. Éc. Norm. Supér. (4), 44, 361-392, 2011 · Zbl 1237.37010
[15] Gabor, D., Theory of communication, J. Inst. Elec. Eng. (London), 93, 429-457, 1946
[16] Gröchenig, K., Gabor frames without inequalities, Int. Math. Res. Not., 23, Article rnm111 pp., 2007 · Zbl 1147.42013
[17] Gröchenig, K., The mystery of Gabor frames, J. Fourier Anal. Appl., 20, 865-895, 2014 · Zbl 1309.42045
[18] Gröchenig, K., Foundations of Time-Frequency Analysis, 2001, Birkhäuser: Birkhäuser Boston · Zbl 0966.42020
[19] Gröchenig, K.; Romero, J. L.; Stöckler, J., Sampling theorems for shift-invariant spaces, Gabor frames, and totally positive functions, Invent. Math., 211, 1119-1148, 2018 · Zbl 1440.42150
[20] Gröchenig, K.; Stöckler, J., Gabor frames and totally positive functions, Duke Math. J., 162, 1003-1031, 2013 · Zbl 1277.42037
[21] Gu, Q.; Han, D., When a characteristic function generates a Gabor frame, Appl. Comput. Harmon. Anal., 24, 290-309, 2008 · Zbl 1242.42023
[22] Haynes, A.; Marklof, J., Higher dimensional Steinhaus and Slater problems via homogeneous dynamics, Ann. Sci. Éc. Norm. Supér. (4), 53, 537-557, 2020 · Zbl 1475.11130
[23] Heil, C., History and evolution of the density theorem for Gabor frames, J. Fourier Anal. Appl., 13, 113-166, 2007 · Zbl 1133.42043
[24] Heil, C.; Walnut, D. F., Continuous and discrete wavelet transforms, SIAM Rev., 31, 628-666, 1989 · Zbl 0683.42031
[25] Janssen, A. J.E. M., Some Weyl-Heisenberg frame bound calculations, Indag. Math., 7, 165-183, 1996 · Zbl 1056.42512
[26] Janssen, A. J.E. M., Zak transforms with few zeros and the tie, (Feichtinger, H. G.; Strohmer, T., Advances in Gabor Analysis, 2003, Birkhäuser: Birkhäuser Boston), 31-70 · Zbl 1027.42025
[27] Janssen, A. J.E. M., On generating tight Gabor frames at critical density, J. Fourier Anal. Appl., 9, 175-214, 2003 · Zbl 1024.42018
[28] Janssen, A. J.E. M.; Strohmer, T., Hyperbolic secants yield Gabor frames, Appl. Comput. Harmon. Anal., 12, 259-267, 2002 · Zbl 1005.42021
[29] Keane, M., Interval exchange transformations, Math. Z., 141, 25-31, 1975 · Zbl 0278.28010
[30] Lemvig, J.; Nielsen, K. H., Counterexamples to the B-spline conjecture for Gabor frames, J. Fourier Anal. Appl., 22, 1440-1451, 2016 · Zbl 1355.42032
[31] Lyubarskii, Yu., Frames in the Bargmann space of entire functions, (Entire and Subharmonic Functions, 1992, Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 167-180 · Zbl 0770.30025
[32] Marmi, S.; Moussa, P.; Yoccoz, J.-C., The cohomological equation for Roth-type interval exchange maps, J. Am. Math. Soc., 18, 823-872, 2005 · Zbl 1112.37002
[33] von Neumann, J., Mathematische Grundlagen der Quantenmechanik, 1932, Springer: Springer Berlin · JFM 58.0929.06
[34] Ron, A.; Shen, Z., Weyl-Heisenberg frames and Riesz bases in \(L^2( \mathbb{R}^d)\), Duke Math. J., 89, 237-282, 1997 · Zbl 0892.42017
[35] Seip, K., Density theorems for sampling and interpolation in the Bargmann-Fock space I, J. Reine Angew. Math., 429, 91-106, 1992 · Zbl 0745.46034
[36] Seip, K.; Wallstén, R., Density theorems for sampling and interpolation in the Bargmann-Fock space II, J. Reine Angew. Math., 429, 107-113, 1992 · Zbl 0745.46033
[37] Sós, V. T., On the distribution mod 1 of the sequence \(\{n \alpha \}\), Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 1, 127-134, 1958 · Zbl 0094.02903
[38] Surányi, J., Über die Anordnung der Vielfachen einer reellen Zahl mod 1, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 1, 107-111, 1958 · Zbl 0094.02904
[39] Veech, W. A., The metric theory of interval exchange transformations I, II, III, Am. J. Math., 106, 1331-1422, 1984 · Zbl 0631.28008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.