×

Multi-dimensional wavelets for scalable image decomposition: orbital wavelets. (English) Zbl 1457.42051

The paper deals with a 2-D continuous wavelet transform. The authors propose to use the following nonseparable choice of wavelet transform \begin{gather*} \widehat{\varphi}_{LL}(x,\,y) = \frac{1}{\sqrt{2}} \left(\varphi^{\ast}(x) \varphi(y) +\varphi^{\ast}(y) \varphi(x)\right), \\ \widehat{\psi}_{LH}(x,\,y) = \frac{1}{\sqrt{2}} \left(\varphi(x) \psi(y) -\varphi(y) \psi(x)\right),\\ \widehat{\psi}_{HL}(x,\,y) = - \widehat{\psi}_{LH}(x,\,y),\\ \widehat{\psi}_{HH}(x,\,y) = \frac{1}{\sqrt{2}} \left(\psi^{\ast}(x) \psi(y) -\psi^{\ast}(y) \psi(x)\right), \end{gather*} where \(\varphi\) and \(\psi\) denote a 1-D scaling function and a 1-D wavelet function respectively. (The author’s notation is kept.) The suggested choice is illustrated by a picture of image decomposition.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
65T60 Numerical methods for wavelets
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
70M99 Orbital mechanics

References:

[1] Antonini, M., Barlaud, M., Mathieu, P. and Daubechies, I., Image coding using wavelet transform, IEEE Trans. Image Process.1 (1992) 205-220.
[2] Ashmead, J., Morlet wavelets in quantum mechanics, Quanta1 (2012) 58-70.
[3] Aujol, J. F., Gilboa, G., Chan, T. and Ocher, S., Structure-texture image decomposition: Modeling, algorithms and parameter selection, Int. J. Comput. Vis.67 (2006) 111-136. · Zbl 1287.94011
[4] Baganne, A., Bennour, I., Elmarzougui, M., Gaiech, R. and Martin, E., A multi-level design flow for incorporating IP cores: Case study of 1D wavelet IP integration, in IEEE Design, Automation and Test in Europe Conference and Exhibition, Vol. 1 (Munich, Germany, 2003), pp. 250-255.
[5] Beiser, A., Concepts of Modern Physics (McGraw-Hill, 1994). · Zbl 0133.17003
[6] Boggess, A. and Narcowich, F. J., A First Course in Wavelets with Fourier Analysis (Wiley, 2009). · Zbl 1185.42001
[7] Bottreau, V., Bénetiére, M. and Felts, B., A fully scalable 3D subband video codec, IEEE Int. Conf. Image Process, Vol. 2 (Thessaloniki, Greece, 2001), pp. 1017-1020.
[8] Burrus, C. S., Gopinath, R. A. and Guo, H., Introduction to Wavelets and the Wavelet Transform — A Primer (Prentice-Hall, 1998).
[9] Daubechies, I., Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, 1992). · Zbl 0776.42018
[10] de Oliveira, H. M., Análise de Sinais Para Engenheiros: Uma Abordagem Via Wavelets (Editora Brasport, 2007).
[11] DeVore, R., Jawwerth, B. and Lucier, B., Image compression through wavelet transform coding, IEEE Trans. Inf. Theory38 (1995) 719-746. · Zbl 0754.68118
[12] Duck, I. and Sudarshan, E. C. G., Pauli and the Spin-Statistics Theorem (World Scientific, 1998). · Zbl 0941.81002
[13] Eisberg, R. M., Fundamentals of Modern Physics (J. Wiley & Sons, 2007). · Zbl 0097.39402
[14] Hilton, M. L., Jawerth, B. D. and Sengupta, A., Compressing still and moving images with wavelets, Multimed. Syst.2 (1994) 218-227.
[15] Hu, J., Huang, J., Huang, D. and Shi, Y. Q., Image fragile watermarking based on fusion of multi-resolution tamper detection, Electron. Lett.38 (2002) 1512-1513.
[16] Jacobs, C. E., Finkelstein, A. and Salesin, D. H., Fast multiresolution image querying, Proc. Special Interest Group on Graphics and Interactive Techniques, Vol. 1, 1995, pp. 277-286.
[17] Jallouli, M., Khélifa, W. B. H., Mabrouk, A. Ben and Mahjoub, M. A., Toward recursive spherical harmonics issued bi-filters: Part II: An associated spherical harmonics entropy for optimal modeling, Soft Comput.24 (2019) 5231-5243. · Zbl 1490.94037
[18] Jallouli, M., Zemni, M., Mabrouk, A. Ben and Mahjoub, M. A., Toward recursive spherical harmonics-issued bi-filters: Part I: Theoretical framework, Soft Comput.23(20) (2019) 10415-10428. · Zbl 1430.94043
[19] Kim, B. G., Shim, J. I. and Park, D. J., Fast image segmentation based on multi-resolution analysis and wavelets, Pattern Recognit. Lett.24 (2003) 2995-3006.
[20] Kingsbury, N., Image processing with complex wavelets, Phil. Trans. Roy. Soc. Lond. A Math. Phys. Eng. Sci.357 (1999) 2543-2560. · Zbl 0976.68527
[21] Lawton, W. M., Necessary and sufficient conditions for constructing orthonormal wavelet bases, J. Math. Phys.32 (1991) 57-61. · Zbl 0757.46012
[22] Lim, J. S., Two-Dimensional Signal and Image Processing (Prentice Hall, 1990).
[23] Maaß, S., Families of orthogonal 2D wavelets, Soc. Ind. Appl. Math. J. Appl. Anal.27 (1996) 1454-1481. · Zbl 0881.42022
[24] Mallat, S. G., A Wavelet Tour of Signal Processing, 2nd edn. (Academic Press, 1999). · Zbl 0998.94510
[25] Meyer, Y., Ondelettes et Opérateurs (Hermann, 1990). · Zbl 0694.41037
[26] M. Misiti, Y. Misiti, G. Oppenheim and J. M. Poggi, Wavelet Toolbox User’s Guide 4, Technical report, MathWorks (2002). · Zbl 1126.94301
[27] Muraki, S., Volume data and wavelet transforms, IEEE Comput. Graph. Appl.13 (1993) 50-56.
[28] Nicolis, O. and Mateu, J., 2D anisotropic wavelet entropy with an application to earthquakes in Chile, Entropy17(6) (2015) 4155-4172.
[29] Ohm, J. R., van der Schaar, M. and Woods, J. W., Interframe wavelet coding: Motion picture representation for universal scalability, Image Commun. Signal Process.19 (2004) 877-908.
[30] Radha, H. M., van der Schaar, M. and Chen, Y., The MPEG-4 fine-grained scalable video coding method for multimedia streaming over IP, IEEE Trans. Multimed.3 (2001) 53-58.
[31] Rekik, S., Guerchi, D., Hamam, H. and Selouani, S. A., Audio steganography coding using the discrete wavelet transforms, Int. J. Comput. Sci. Secur.6 (2012) 79-93.
[32] Roerdink, J. B. T. M., Roerdink, J. B. T. M. and Westenberg, M. A., Wavelet-based volume visualization, in Nieuw Archief voor Wiskunde, Vol. 17 (Royal Dutch Mathematical Society, 1999), 149-158. · Zbl 1038.42037
[33] Rudin, W., Principles of Mathematical Analysis, Vol. 62 (McGraw-Hill, 1976). · Zbl 0346.26002
[34] Saha, S., Image compression — From DCT to wavelets: A review, Crossroads6 (2000) 12-21.
[35] Schröder, P., Wavelets in computer graphics, Proc. IEEE84 (1996) 615-625.
[36] A. Skodras, C. Chistopoulos and T. Ebrahimi, The JPEG 2000 still image compression standard, IEEE Signal Process. Mag.18 (2001) 36-58.
[37] Sodagar, I. and Zhang, Y. Q., Scalable picture coding for multimedia applications, in Wavelet, Subband and Block Transforms in Communication and Multimedia, Vol. 504 (Springer, Boston, MA, 2002), pp. 295-322. · Zbl 1210.94020
[38] Stollnitz, E. J. and Derose, T. D., Wavelets for Computer Graphics (Morgan-Kaufmann, 1996).
[39] Strang, G. and Nguyen, T., Wavelets and Filter Banks (Wellesley-Cambridge Press, 1997). · Zbl 1254.94002
[40] Sullivan, D. M., Quantum Mechanics for Electrical Engineers, (Wiley, 2003). · Zbl 1256.81001
[41] Taubman, D. and Zakhor, A., Multirate 3D subband coding of video, IEEE Trans. Image Process.3 (1994) 572-588.
[42] B. E. Usevitch, A tutorial on modern lossy wavelet image compression: Foundations of JPEG 2000, IEEE Signal Process. Mag.18 (2001) 22-35.
[43] van der Schaar, M. and Turaga, D. S., Multiple description scalable coding using wavelet-based motion compensated temporal filtering, Proc. IEEE Int. Conf. Image Processing, Vol. 3 (Barcelona, Spain, 2003), pp. 489-492.
[44] Vetterli, M. and Kovacevic, J., Wavelets and Subband Coding (Prentice-Hall, 1990). · Zbl 0885.94002
[45] Zemni, M., Jallouli, M., Mabrouk, A. Ben and Mahjoub, M. Ali, Explicit Haar-Schauder multiwavelet filters and algorithms, Part II: Relative entropy-based estimation for optimal modeling of biomedical signals, Int. J. Wavelets, Multiresol. Inf. Process.17(4) (2019) 1950038-1-1950038-25. · Zbl 1425.92122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.