×

Cochain level May-Steenrod operations. (English) Zbl 1487.55026

In this paper, the authors provide effective constructions for Steenrod operations at the cochain level, based on May’s approach [J. P. May, Lect. Notes Math. 168, 153–231 (1970; Zbl 0242.55023)] via May-Steenrod structures (in the terminology of this paper).
The authors fix a commutative ring \(R\) (usually \(\mathbb{Z}\) or \(\mathbb{F}_p\), for \(p\) a prime) and work in chain complexes over \(R\). They choose an \(E_\infty\)-operad \(\mathcal{R}\) (in particular, \(\mathcal{R} (0) = R\) and, for \(t \geq 0\), \(\mathcal{R}(t)\) is a free \(R[S_t]\)-resolution of the trivial \(S_t\)-module \(R\), where \(S_t\) denotes the symmetric group); \(\mathcal{W}(t)\) denotes the usual ‘minimal’ free \(C_t\)-resolution of the trivial \(C_t\)-module \(R\), where \(C_t \subset S_t\) is the cyclic group of order \(t\).
As the authors recall, the key step in constructing Steenrod operations via \(\mathcal{R}\) is to give a May-Steenrod structure. This boils down to specifying, for each \(t \geq 0\), a quasi-isomorphism \[ \mathcal{W} (t) \stackrel{\simeq}{\rightarrow} \mathcal{R} (t) \] of complexes over \(R[C_t]\), where the codomain is given the restricted structure via \(C_t \subset S_t\).
The main contribution of the paper is to exhibit such structures on some standard combinatorial \(E_\infty\)-operads, including the Barratt-Eccles operad and the surjection operad.
The results are applied to construct a natural May-Steenrod structure on the normalized cochains of any simplicial (respectively cubical) set. This can be implemented to give the effective computation of Steenrod operations.

MSC:

55S05 Primary cohomology operations in algebraic topology
55U05 Abstract complexes in algebraic topology
55S10 Steenrod algebra
55S12 Dyer-Lashof operations
55-04 Software, source code, etc. for problems pertaining to algebraic topology
55U15 Chain complexes in algebraic topology
55S15 Symmetric products and cyclic products in algebraic topology

Citations:

Zbl 0242.55023

Software:

ComCH

References:

[1] J. F. Adams, On the cobar construction, Proc. Natl. Acad. Sci. U.S.A. 42 (1956), no. 7, 409-412. · Zbl 0071.16404
[2] J. F. Adams, Stable homotopy and generalised homology, Chic. Lectures in Math., University of Chicago, Chicago, 1995. · Zbl 0309.55016
[3] J. Adem, The iteration of the Steenrod squares in algebraic topology, Proc. Natl. Acad. Sci. USA 38 (1952), 720-726. · Zbl 0048.17002
[4] A. Adem and R. J. Milgram, Cohomology of Finite Groups, 2nd ed., Grundlehren Math. Wiss. 309, Springer, Berlin, 2004. · Zbl 1061.20044
[5] D. Ayala and R. Hepworth, Configuration spaces and \Theta_n, Proc. Amer. Math. Soc. 142 (2014), no. 7, 2243-2254. · Zbl 1304.18013
[6] C. Balteanu, Z. Fiedorowicz, R. Schwänzl and R. Vogt, Iterated monoidal categories, Adv. Math. 176 (2003), no. 2, 277-349. · Zbl 1030.18006
[7] M. Barratt and S. Priddy, On the homology of non-connected monoids and their associated groups, Comment. Math. Helv. 47 (1972), 1-14. · Zbl 0262.55015
[8] M. A. Batanin, Monoidal globular categories as a natural environment for the theory of weak n-categories, Adv. Math. 136 (1998), no. 1, 39-103. · Zbl 0912.18006
[9] H. J. Baues, Geometry of loop spaces and the cobar construction, Mem. Amer. Math. Soc. 230 (1980), 1-171. · Zbl 0473.55009
[10] D. J. Benson, Representations and Cohomology. II. Cohomology of Groups and Modules, 2nd ed., Cambridge Stud. Adv. Math. 31, Cambridge University, Cambridge, 1998. · Zbl 0908.20002
[11] C. Berger, Combinatorial models for real configuration spaces and E_n-operads, Operads: Proceedings of Renaissance Conferences (Hartford/Luminy 1995), Contemp. Math. 202, American Mathematical Society, Providence (1997), 37-52. · Zbl 0860.18001
[12] C. Berger and B. Fresse, Combinatorial operad actions on cochains, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 1, 135-174. · Zbl 1056.55006
[13] C. Berger and R. M. Kaufmann, Comprehensive factorisation systems, Tbilisi Math. J. 10 (2017), no. 3, 255-277. · Zbl 1397.18004
[14] L. Bhardwaj, D. Gaiotto and A. Kapustin, State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter, J. High Energy Phys. 4 (2017), Paper No. 96. · Zbl 1378.81128
[15] J. M. Boardman and R. M. Vogt, Homotopy Invariant Algebraic Structures on Topological Spaces, Lecture Notes in Math. 347, Springer, Berlin, 1973. · Zbl 0285.55012
[16] G. Brumfiel, A. M. Medina-Mardones and J. Morgan, A cochain level proof of Adem relations in the mod 2 Steenrod algebra, J. Homotopy Relat. Struct. (2021), to appear. · Zbl 1487.55027
[17] G. Brumfiel and J. Morgan, The Pontrjagin dual of 3-dimensional spin bordism, preprint (2016), https://arxiv.org/abs/1612.02860.
[18] G. Brumfiel and J. Morgan, The Pontrjagin dual of 4-dimensional spin bordism, preprint (2018), https://arxiv.org/abs/1803.08147.
[19] G. Carlsson, Topology and data, Bull. Amer. Math. Soc. (N. S.) 46 (2009), no. 2, 255-308. · Zbl 1172.62002
[20] J. M. Chan, G. Carlsson and R. Rabadan, Topology of viral evolution, Proc. Natl. Acad. Sci. 110 (2013), no. 46, 18566-18571. · Zbl 1292.92014
[21] D. Chataur and M. Livernet, Adem-Cartan operads, Comm. Algebra 33 (2005), no. 11, 4337-4360. · Zbl 1095.55010
[22] F. R. Cohen, T. J. Lada and J. P. May, The Homology of Iterated Loop Spaces, Lecture Notes in Math. 533, Springer, Berlin, 1976. · Zbl 0334.55009
[23] V. De Silva and R. Ghrist, Coverage in sensor networks via persistent homology, Algebr. Geom. Topol. 7 (2007), no. 1, 339-358. · Zbl 1134.55003
[24] E. Dyer and R. K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35-88. · Zbl 0119.18206
[25] H. Edelsbrunner and J. Harer, Persistent homology – a survey, Contemp. Math. 453 (2008), 257-282. · Zbl 1145.55007
[26] D. Gaiotto and A. Kapustin, Spin TQFTs and fermionic phases of matter, Int. J. Modern Phys. A 31 (2016), no. 28-29, Article ID 1645044. · Zbl 1351.81084
[27] M. Gerstenhaber and A. A. Voronov, Homotopy G-algebras and moduli space operad, Int. Math. Res. Not. IMRN 1995 (1995), no. 3, 141-153. · Zbl 0827.18004
[28] R. Gonzalez-Diaz and P. Real, HPT and cocyclic operations, Homology Homotopy Appl. 7 (2005), no. 2, 95-108. · Zbl 1084.55010
[29] N. Jacobson, Basic Algebra. II, 2nd ed., W. H. Freeman, New York, 1989. · Zbl 0694.16001
[30] T. Kadeishvili, DG Hopf algebras with Steenrod’s i-th coproducts, Bull. Georgian Natl. Acad. Sci. 158 (1998), no. 2, 203-206. · Zbl 0946.55011
[31] A. Kapustin and R. Thorngren, Fermionic SPT phases in higher dimensions and bosonization, J. High Energy Phys. 10 (2017), Paper No. 80. · Zbl 1383.83180
[32] R. M. Kaufmann, Moduli space actions on the Hochschild co-chains of a Frobenius algebra. II. Correlators, J. Noncommut. Geom. 2 (2008), no. 3, 283-332. · Zbl 1169.55005
[33] R. M. Kaufmann, Dimension vs. genus: A surface realization of the little k-cubes and an E_{\infty} operad, Algebraic Topology—Old and New, Banach Center Publ. 85, Polish Academy of Sciences, Warsaw (2009), 241-274. · Zbl 1171.55004
[34] R. M. Kaufmann, Feynman categories and representation theory, Representations of Algebras, Geometry and Physics, Contemp. Math. 769, American Mathematical Society, Providence (2021), 11-84. · Zbl 1497.18029
[35] R. M. Kaufmann, M. Livernet and R. C. Penner, Arc operads and arc algebras, Geom. Topol. 7 (2003), 511-568. · Zbl 1034.18009
[36] R. M. Kaufmann and B. C. Ward, Feynman Categories, Astérisque 387, Société Mathématique de France, Paris, 2017. · Zbl 1434.18001
[37] R. M. Kaufmann and Y. Zhang, Permutohedral structures on E_2-operads, Forum Math. 29 (2017), no. 6, 1371-1411. · Zbl 1454.55010
[38] M. Krčál and P. Pilarczyk, Computation of cubical Steenrod squares, Computational Topology in Image Context, Lecture Notes in Comput. Sci. 9667, Springer, Cham (2016), 140-151. · Zbl 1339.68273
[39] T. Kudo and S. Araki, Topology of H_n-spaces and H-squaring operations, Mem. Fac. Sci. Kyūsyū Univ. A 10 (1956), 85-120. · Zbl 0074.38502
[40] T. Lawson, En-spectra and Dyer-Lashof operations, Handbook of Homotopy Theory, Chapman and Hall/CRC, Boca Raton (2020), 793-849. · Zbl 1476.55028
[41] Y. Lee, S. D. Barthel, P. Dłotko, S. M. Moosavi, K. Hess and B. Smit, Quantifying similarity of pore-geometry in nanoporous materials, Nature Comm. 8 (2017), no. 1, 1-8.
[42] M. Markl, Operads and PROPs, Handbook of Algebra. Vol. 5, Elsevier/North-Holland, Amsterdam (2008), 87-140. · Zbl 1211.18007
[43] J. P. May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications: A conference to Celebrate N. E. Steenrod’s Sixtieth Birthday, Lecture Notes in Math. 168, Springer, Berlin (1970), 153-231. · Zbl 0242.55023
[44] J. P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Math. 271, Springer, Berlin, 1972. · Zbl 0244.55009
[45] J. E. McClure and J. H. Smith, Multivariable cochain operations and little n-cubes, J. Amer. Math. Soc. 16 (2003), no. 3, 681-704. · Zbl 1014.18005
[46] A. M. Medina-Mardones, A finitely presented E_{\infty}-prop II: Cellular context, preprint (2018), https://arxiv.org/abs/1808.07132. · Zbl 1481.55010
[47] A. M. Medina-Mardones, Persistence Steenrod modules, preprint (2018), https://arxiv.org/abs/1812.05031.
[48] A. M. Medina-Mardones, A finitely presented E_{\infty}-prop I: Algebraic context, High. Struct. 4 (2020), no. 2, 1-21. · Zbl 1459.55010
[49] A. M. Medina-Mardones, An algebraic representation of globular sets, Homology Homotopy Appl. 22 (2020), no. 2, 135-150. · Zbl 1440.55014
[50] A. M. Medina-Mardones, An effective proof of the Cartan formula: The even prime, J. Pure Appl. Algebra 224 (2020), no. 12, Article ID 106444. · Zbl 1472.55012
[51] A. M. Medina-Mardones, A combinatorial \(E}_{\infty\) algebra structure on cubical cochains, preprint (2021), https://arxiv.org/abs/2107.00669.
[52] A. M. Medina-Mardones, A computer algebra system for the study of commutativity up to coherent homotopies, Tbilisi Math. J. (2021), to appear. · Zbl 1487.55001
[53] A. M. Medina-Mardones, New formulas for cup-i products and fast computation of Steenrod squares, preprint (2021), https://arxiv.org/abs/2105.08025.
[54] A. M. Medina-Mardones and M. Rivera, The cobar construction as an E_{\infty}-bialgebra model of the based loop space, preprint (2021), https://arxiv.org/abs/2108.02790.
[55] J. Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150-171. · Zbl 0080.38003
[56] C. Rezk, A Cartesian presentation of weak n-categories, Geom. Topol. 14 (2010), no. 1, 521-571. · Zbl 1203.18015
[57] D. P. Sinha, The (non-equivariant) homology of the little disks operad, OPERADS 2009, Sémin. Congr. 26, Société Mathématique de France, Paris (2013), 253-279. · Zbl 1277.18012
[58] N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. (2) 48 (1947), 290-320. · Zbl 0030.41602
[59] N. E. Steenrod, Cyclic reduced powers of cohomology classes, Proc. Natl. Acad. Sci. USA 39 (1953), 217-223. · Zbl 0050.39501
[60] N. E. Steenrod, Homology groups of symmetric groups and reduced power operations, Proc. Natl. Acad. Sci. USA 39 (1953), 213-217. · Zbl 0050.39401
[61] N. E. Steenrod and D. B. A. Epstein, Cohomology Operations. Number 50-51, Princeton University, Princeton, 1962. · Zbl 0102.38104
[62] R. Steiner, Omega-categories and chain complexes, Homology Homotopy Appl. 6 (2004), no. 1, 175-200. · Zbl 1071.18005
[63] D. Sullivan, String topology background and present state, Current Developments in Mathematics, 2005, International Press, Somerville (2007), 41-88. · Zbl 1171.55003
[64] V. Tourtchine, Dyer-Lashof-Cohen operations in Hochschild cohomology, Algebr. Geom. Topol. 6 (2006), 875-894. · Zbl 1145.55017
[65] T. Tradler and M. Zeinalian, Algebraic string operations, K-Theory 38 (2007), no. 1, 59-82. · Zbl 1144.55012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.