×

Weyl quantization of symmetric spaces. I: Hyperbolic matrix domains. (English) Zbl 0736.47014

The classical Weyl quantization formula \[ (W(f)u)(x)=\int_{R^ n}\int_{R^ n}f\left ({x+y\over 2},\zeta\right) e^{2\pi i(x-{y\over \zeta})}u(y)dyd\zeta \] is extended to the form \[ W(f)=\int_ \Omega f(\zeta)W(s_ \zeta)d\mu_ \Omega(\zeta) \] where \(\Omega\) is a bounded symmetric domain with invariant measure \(\mu_ \Omega\) (the author specializes here on the hyperbolic matrix ball \[ \Omega=\{z\in\mathbb{C}^{r\times r}: I-zz^*>0\}, r>0) \] and \(W\) is a unitary representation of the group of symmetries of \(\Omega\). The main result (Theorem 5.5) provides conditions on the symbol function \(f\) under which \(W(f)\) is a bounded Hilbert space operator.

MSC:

47A60 Functional calculus for linear operators
46L70 Nonassociative selfadjoint operator algebras
47G10 Integral operators
Full Text: DOI

References:

[1] Faraut, J.; Korányi, A., Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal., 88, 64-80 (1990) · Zbl 0718.32026
[2] Harris, L. A., Bounded Symmetric Homogeneous Domains in Infinite Dimensional Spaces, (Lecture Notes in Mathematics, Vol. 364 (1974), Springer-Verlag: Springer-Verlag Berlin/New York), 13-40 · Zbl 0293.46049
[3] Helgason, S., Differential Geometry and Symmetric Spaces (1962), Academic Press: Academic Press New York · Zbl 0122.39901
[4] Helgason, S., Groups and Geometric Analysis (1984), Academic Press: Academic Press New York · Zbl 0543.58001
[5] Hoogenboom, B., Spherical functions and differential operators on complex Grassmann manifolds, Ark. Mat., 20, 69-85 (1982) · Zbl 0496.33010
[6] Hörmander, L., The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math., 23, 359-443 (1979) · Zbl 0388.47032
[7] Koecher, M., An Elementary Approach to Bounded Symmetric Domains (1969), Rice University: Rice University Houston · Zbl 0217.10901
[8] Loos, O., Jordan Pairs, (Lecture Notes in Mathematics, Vol. 460 (1975), Springer-Verlag: Springer-Verlag Berlin/New York) · Zbl 0301.17003
[9] Loos, O., Bounded Symmetric Domains and Jordan Pairs (1977), Univ. of California: Univ. of California Irvine
[10] MacDonald, I., Symmetric Functions and Hall Polynomials (1979), Clarendon: Clarendon Oxford · Zbl 0487.20007
[11] Rossi, H.; Vergne, M., Analytic continuation of the holomorphic discrete series of a semi-simple Lie group, Acta Math., 136, 1-59 (1976) · Zbl 0356.32020
[12] Unterberger, A.; Unterberger, J., La série de \(SL (2,R)\) et les opérateurs pseudo-differentiels sur une demi-droite, Ann. Sci. Ècole Norm. Sup., 17, 83-116 (1984) · Zbl 0549.35119
[13] Unterberger, A.; Unterberger, J., A quantization of the Cartan domain \(BDI (q = 2)\) and operators on the light cone, J. Funct. Anal., 72, 279-319 (1987) · Zbl 0632.58033
[14] Upmeier, H., Symmetric Banach Manifolds and Jordan \(C^∗\)-algebras (1985), North-Holland: North-Holland Amsterdam · Zbl 0561.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.