×

The Pompeiu problem on locally symmetric spaces. (English) Zbl 0777.43006

In [Comment. Math. Helv. 55, 593-621 (1990; Zbl 0452.43012)] L. Zalcman and the reviewer stated a very general type of Pompeiu problem as follows. Let \(G\) be a group of transformations of a locally compact space \(X\), \(d\mu\) an invariant measure on \(X\), then an open relatively compact set \(\Omega\subseteq X\) is said to have the Pompeiu property if the map \(P: C(X)\to C(G)\) given by \(Pf(g):=\int_{g(\Omega)} f(x)d\mu(x)\) is injective. In this generality the problem is very hard, but some progress can be made for \(X=G/K\) an irreducible symmetric space of rank one or \(X=\mathbb{R}^ n\), with \(G\) the Euclidean group \(M(n)\). Some of the work of the reviewer on the local Pompeiu property [e.g., C. A. Berenstein and R. Gay, J. Anal. Math. 52, 133-166 (1989; Zbl 0668.30037)] indicates that the existence of a global transformation group \(G\) might not be necessary, similarly the invariance of the measure might also be disposable [e.g., C. Berenstein and D. Pascuas, J. Math. (to appear)]. In that case one may just want to consider a Riemannian manifold and preplace the translates of \(\Omega\) by the collection of all balls of a single radius (or a few radii) [e.g., T. Sunada, Trans. Am. Math. Soc. 267, 483-501 (1981; Zbl 0514.58037), E. T. Quinto (to appear)].
The author proceeds in this direction considering the following idea: Let \(X\) be a Riemannian manifold, \(T_ x\) its tangent space at \(x\in X\). If \(\mu\) is a radial measure with compact support in \(\mathbb{R}^ n\), \(n=\dim X\), then it induces a measure on \(T_ x\) by choosing an orthogonal basis of \(T_ x\) and using it to identify \(T_ x\) to \(\mathbb{R}^ n\), then the Pompeiu transform is \[ P_ \mu(f)(x)= \int_{\mathbb{R}^ n} f(\exp_ x(t))\upsilon_ x(t)d\mu(t), \] where \(\upsilon_ x\) is the Jacobian of \(\exp_ x\). Since \(\mu\) is radial, the definition is independent of the choice of orthonormal basis in \(T_ x\). By taking \(d\mu(t)=\chi_ B(t)dt\), \(B=B/(0,r)\subseteq\mathbb{R}^ n\), we can define the Pompeiu transform with respect to balls. The author uses these ideas to extend the known results about the Pompeiu transform with respect to balls from irreducible symmetric spaces \(\widetilde{X}=G/K\) of rank 1 to locally symmetric spaces \(\Gamma\setminus \widetilde{X}\), for some discrete subgroup \(\Gamma\) of \(G\). He works out in detail a number of interesting examples.

MSC:

43A85 Harmonic analysis on homogeneous spaces
Full Text: DOI

References:

[1] E. Badertscher,Harmonic analysis and Radon transforms on pencils of geodesics, Math. Scand.58 (1986), 187–214. · Zbl 0589.43010
[2] S. C. Bagchi and A. Sitaram,The Pompeiu problem revisited, L’Enseignement Math.36 (1990), 67–91. · Zbl 0722.43009
[3] C. A. Berenstein and M. Shahshahani,Harmonic analysis and the Pompeiu problem, Am. J. Math.105 (1983), 1217–1229. · Zbl 0522.43006 · doi:10.2307/2374339
[4] C. A. Berenstein and L. Zalcman,Pompeiu’s problem on spaces with constant curvature, J. Analyse Math.30 (1976), 113–130. · Zbl 0332.35033 · doi:10.1007/BF02786707
[5] C. A. Berenstein and L. Zalcman,Pompeiu’s problem on symmetric spaces, Comment. Math. Helv.55 (1980), 593–621. · Zbl 0452.43012 · doi:10.1007/BF02566709
[6] A. L. Besse,Manifolds all of whose Geodesics are Closed, Springer-Verlag, Berlin, 1978. · Zbl 0387.53010
[7] R. P. Boas,Entire Functions, Academic Press, New York, 1954. · Zbl 0058.30201
[8] J. R. Brown,Ergodic Theory and Toplogical Dynamics, Academic Press, New York, 1976.
[9] L. Brown, B. M. Schreiber and B. A. Taylor,Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier (Grenoble)23(3) (1973), 125–154. · Zbl 0265.46044 · doi:10.5802/aif.474
[10] L. Chakalov,Sur un problème de D. Pompeiu, Annaire Univ. Sofia Fac. Phys. Math.40(Livre 1) (1944), 1–44. · Zbl 0063.07316
[11] I. Chavel,Eigenvalues in Riemannian Geometry, Academic Press, New York, 1984.
[12] P. Funk,Über Flächen mit Tauter geschlossenen geodätischen Linien, Math. Annalen74 (1913), 278–300. · JFM 44.0692.03 · doi:10.1007/BF01456044
[13] P. Funk,Über eine geometrische Anwendung der Abelschen Integralgleichung, Math. Annalen77 (1916), 129–135. · JFM 45.0533.01 · doi:10.1007/BF01456824
[14] R. Gangolli and V. S. Varadarajan,Harmonic Analysis of Spherical Functions on Real Reductive Groups, Springer Verlag, Berlin, 1988. · Zbl 0675.43004
[15] P. Günther,Sphärische Mittelwerte in kompakten harmonischen Riemannschen Mannigfaltigkeiten, Math. Annalen165 (1966), 281–296. · Zbl 0144.20801 · doi:10.1007/BF01344013
[16] S. Helgason,Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978. · Zbl 0451.53038
[17] S. Helgason,Groups and Geometric Analysis, Academic Press, New York, 1984. · Zbl 0543.58001
[18] R. Hochreuter,Integraltransformationen vom Radonschen Typ auf der Sphäre, Dissertation, Universität Erlangen, 1989. · Zbl 0701.44001
[19] B. Hoogenboom,Intertwining Functions on Compact Lie Groups, Dissertation, University of Leiden, 1983. · Zbl 0553.43005
[20] F. John,Abhängigkeit zwischen den Flächenintegralen einer stetigen Funktion, Math. Annalen111 (1938), 541–559. · Zbl 0012.25402 · doi:10.1007/BF01472237
[21] S. Kobayashi,Transformation Groups in Differential Geometry, Springer Verlag, Berlin, 1972. · Zbl 0246.53031
[22] T. H. Koornwinder,Jacobi functions and analysis on noncompact semisimple Lie groups, inSpecial Functions, Group Theoretical Aspects and Applications, R. A. Askey, T. H. Koornwinder and W. Schempp (eds.), Reidel, Dordrecht, 1984, pp. 1–85.
[23] P. D. Lax and R. S. Phillips,The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Funct. Anal.46 (1982), 280–350. · Zbl 0497.30036 · doi:10.1016/0022-1236(82)90050-7
[24] W. Müller,Manifolds with Cusps of Rank One, Lecture Notes in Math.1244, Springer-Verlag, Berlin, 1987.
[25] V. Pati, M. Shahshahani and A. Sitaram,On the spherical mean value operator for compact symmetric spaces, Technical Report, Indian Statistical Institute, 1989. · Zbl 0846.53033
[26] D. Pompeiu,Sur une propriété des functions continues dépendant de plusieurs variables, Bull. Sci. Math.53(2) (1929), 328–332.
[27] J. Radon,Über die Bestimmung von Funktionen durch ihre Integralwerte längs bestimmter Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. Nat. Kl.69 (1917), 262–277. · JFM 46.0436.02
[28] I. K. Rana,Determination of probability measures through group actions, Z. Wahrsch. verw. Gebiete53 (1980), 197–206. · Zbl 0438.60017 · doi:10.1007/BF01013316
[29] R. Schneider,Functions on a sphere with vanishing integrals over certain subspheres, J. Math. Anal. Appl.26 (1969), 381–384. · Zbl 0167.32703 · doi:10.1016/0022-247X(69)90160-7
[30] R. Schneider,Über eine Integralgleichung in der Theorie der konvexen Körper, Math. Nachr.44 (1970), 55–75. · Zbl 0162.54302 · doi:10.1002/mana.19700440105
[31] A. Sitaram,Some remarks on measures on noncompact semisimple Lie groups, Pacific J. Math.110 (1984), 429–434. · Zbl 0532.43001 · doi:10.2140/pjm.1984.110.429
[32] T. Sunada,Spherical means and geodesic chains on a Riemannian manifold, Trans. Am. Math. Soc.267 (1981), 483–501. · Zbl 0514.58037 · doi:10.1090/S0002-9947-1981-0626485-6
[33] T. Sunada,Geodesic flows and geodesic random walks, inGeometry of Geodesics and Related Topics, Volume 3 ofAdvanced Studies in Pure Mathematics, K. Shiohama (ed.), North-Holland, Amsterdam, 1984, pp. 47–85.
[34] P. Ungar,Freak theorem about functions on a sphere, J. London Math. Soc.29 (1954), 100–103. · Zbl 0058.28403 · doi:10.1112/jlms/s1-29.1.100
[35] L. Vretare,Elementary spherical functions on symmetric spaces, Math. Scand.39 (1976), 343–358. · Zbl 0387.43009
[36] S. A. Williams,A partial solution of the Pompeiu problem, Math. Annalen223 (1976), 183–190. · Zbl 0329.35045 · doi:10.1007/BF01360881
[37] S. A. Williams,Analyticity of the boundary for Lipschitz domains without the Pompeiu property, Indiana Univ. Math. J.,30 (1981), 357–369. · Zbl 0439.35046 · doi:10.1512/iumj.1981.30.30028
[38] J. A. Wolf,Spaces of Constant Curvature, McGraw-Hill, New York, 1967. · Zbl 0162.53304
[39] L. Zalcman,Analyticity and the Pompeiu problem, Arch. Rational Mech. Anal.47 (1972), 237–254. · Zbl 0251.30047 · doi:10.1007/BF00250628
[40] L. Zalcman,Offbeat integral geometry, Am. Math. Monthly87 (1980), 161–175. · Zbl 0433.53048 · doi:10.2307/2321600
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.