×

Bayes estimation of number of signals. (English) Zbl 0761.62030

Summary: Bayes estimation of the number of signals, \(q\), based on a binomial prior distribution is studied. It is found that the Bayes estimate depends on the eigenvalues of the sample covariance matrix \(S\) for the white-noise case and the eigenvalues of the matrix \(S_ 2(S_ 1+A)^{-1}\) for the colored-noise case, where \(S_ 1\) is the sample covariance matrix of observations consisting only of noise, \(S_ 2\) the sample covariance matrix of observations consisting both of noise and signals and \(A\) is some positive definite matrix. Posterior distributions for both the cases are derived by expanding zonal polynomials in terms of monomial symmetric functions and using some of the important formulae of A. T. James [Ann. Math. Statist. 35, 475-501 (1964; Zbl 0121.366)].

MSC:

62F15 Bayesian inference
62N99 Survival analysis and censored data
62M99 Inference from stochastic processes
62P99 Applications of statistics

Citations:

Zbl 0121.366
Full Text: DOI

References:

[1] Akaike, H. (1972). Information theory and an extension of the maximum likelihood principle, Proc. Second International Symposium on Information Theory, Supp. to Problems of Control and Information Theory, 267-281.
[2] Anderson, T. W. (1963). Asymptotic theory for principal component analysis, Ann. Math. Statist., 34, 122-148. · Zbl 0202.49504 · doi:10.1214/aoms/1177704248
[3] Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, Wiley, New York. · Zbl 0651.62041
[4] Constantine, A. G. (1963). Some non-central distribution problems in multivariate analysis, Ann. Math. Statist., 34, 1270-1285. · Zbl 0123.36801 · doi:10.1214/aoms/1177703863
[5] Davis, A. W. (1979). Invariant polynomials with two matrix arguments extending the zonal polynomials: Application to multivariate distribution theory, Ann. Inst. Statist Math., 31, Vol. No. 465-485. · Zbl 0463.62045 · doi:10.1007/BF02480302
[6] Gross, K. and Richards, D. (1987) Special functions of matrix argument I: Algebraic induction, zonal polynomials and hypergeometric functions, Trans. Amer. Math. Soc. 301, 781-811. · Zbl 0626.33010
[7] Hamedani, G. G. and Walter, G. G. (1988) Bayes estimation of the Binomial parameter n, Comm. Statist. A?Theory Methods, 17, 1829-1843. · Zbl 0644.62032 · doi:10.1080/03610928808829716
[8] Hayakawa, T. (1967) On the distribution of the maximum latent root of a positive definite symmetric random matrix, Ann. Inst. Statist. Math., 19, 1-17. · Zbl 0158.37903 · doi:10.1007/BF02911665
[9] James, A. T. (1960). The distribution of the latent roots of the covariance matrix, Ann. Math. Statist., 31, 151-158. · Zbl 0201.52401 · doi:10.1214/aoms/1177705994
[10] James, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples, Ann. Math. Statist., 35, 475-501. · Zbl 0121.36605 · doi:10.1214/aoms/1177703550
[11] Khatri, C. G. and Pillai, K. C. S. (1968). On the noncentral distributions of two test criteria in multivariate analysis of variance, Ann. Math. Statist., 39, 215-226. · Zbl 0155.27102 · doi:10.1214/aoms/1177698521
[12] Krishmaiah, P. R. (1976). Some recent development on complex multivariate distributions, J. Multivariate Anal., 6, 1-30. · Zbl 0358.62040 · doi:10.1016/0047-259X(76)90017-8
[13] Kushner, H. B. (1985). On the expansion of C p *(V+I) as a sum of zonal polynomials, J. Multivariate Anal., 17, 84-98. · Zbl 0584.62103 · doi:10.1016/0047-259X(85)90096-X
[14] Kushner, H. B. (1988), The linearization of the product of two zonal polynomials, SIAM J. Math. Anal., 19, 687-717. · Zbl 0642.33024 · doi:10.1137/0519049
[15] Kushner, H. B. and Meisner, M. (1984). Formulas for zonal polynomials, J. Multivariate Anal., 14, 336-347. · Zbl 0538.62057 · doi:10.1016/0047-259X(84)90038-1
[16] Muirhead, R. J. (1988). Zonal polynomials, Encyclopedia of Statistical Sciences, Vol. 8 (eds. S. Kotz, N. L. Johnson and C. B. Read), 676-682, Wiley, New York.
[17] Parkhurst, A. M. and James, A. T. (1974). Zonal polynomials of order 1 through 12, Selected Tables in Mathematical Statistics (eds. H. L. Harter and D. B. Owen), 199-388, American Mathematical Society, Providence, Rhode Island.
[18] Rao, C. R. (1983). Likelihood ratio tests for relationships between two covariance matrices, Studies in Econometric, Time Series and Multivariate Statistics (eds. T. Amemiya, S. Karlin and L. Goodman), Academic Press, New York. · Zbl 0545.62037
[19] Rissanen, J. (1978). Modeling by shortest data description, Automatica?J. IFAC, 14, 463-471. · Zbl 0418.93079
[20] Saw, J. G. (1977). Zonal polynomials: An alternative approach, J. Multivariate Anal., 7, 461-467. · Zbl 0367.62060 · doi:10.1016/0047-259X(77)90086-0
[21] Schwartz, G. (1978). Estimating the dimension of a model, Ann. Statist., 6, 461-464. · Zbl 0379.62005 · doi:10.1214/aos/1176344136
[22] Wax, M. and Kailath, T. (1985). Determination of the number of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process., 33, 387-392. · doi:10.1109/TASSP.1985.1164557
[23] Zhao, L. C., Krishnaiah, P. R. and Bai, Z. D. (1986a). On detection of number of signals in presence of white noise, J. Multivariate Anal., 20, 1-25. · Zbl 0617.62055 · doi:10.1016/0047-259X(86)90017-5
[24] Zhao, L. C., Krishnaiah, P. R. and Bai, Z. D. (1986b). On detection of the number of signals when the noise covariance matrix is arbitrary, J. Multivariate Anal., 20, 26-49. · Zbl 0617.62056 · doi:10.1016/0047-259X(86)90018-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.