×

On the general analytical solution of the kinematic Cosserat equations. (English) Zbl 1453.74051

Gerdt, Vladimir P. (ed.) et al., Computer algebra in scientific computing. 18th international workshop, CASC 2016, Bucharest, Romania, September 19–23, 2016. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 9890, 367-380 (2016).
Summary: Based on a Lie symmetry analysis, we construct a closed form solution to the kinematic part of the (partial differential) Cosserat equations describing the mechanical behavior of elastic rods. The solution depends on two arbitrary analytical vector functions and is analytical everywhere except a certain domain of the independent variables in which one of the arbitrary vector functions satisfies a simple explicitly given algebraic relation. As our main theoretical result, in addition to the construction of the solution, we proof its generality. Based on this observation, a hybrid semi-analytical solver for highly viscous two-way coupled fluid-rod problems is developed which allows for the interactive high-fidelity simulations of flagellated microswimmers as a result of a substantial reduction of the numerical stiffness.
For the entire collection see [Zbl 1346.68010].

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H05 Explicit solutions of dynamical problems in solid mechanics
35A30 Geometric theory, characteristics, transformations in context of PDEs

References:

[1] Ainley, J., Durkin, S., Embid, R., Boindala, P., Cortez, R.: The method of images for regularized stokeslets. J. Comput. Phys. 227, 4600–4616 (2008) · Zbl 1388.76060 · doi:10.1016/j.jcp.2008.01.032
[2] Antman, S.S.: Nonlinear Problems of Elasticity. Applied Mathematical Sciences, vol. 107. Springer, New York (1995) · Zbl 0820.73002 · doi:10.1007/978-1-4757-4147-6
[3] Bächler, T., Gerdt, V., Langer-Hegermann, M., Robertz, D.: Algorithmic Thomas decomposition of algebraic and differential systems. J. Symbolic Comput. 47, 1233–1266 (2012) · Zbl 1315.35013 · doi:10.1016/j.jsc.2011.12.043
[4] Blinkov, Y., Cid, C., Gerdt, V., Plesken, W., Robertz, D.: The Maple package Janet: II. linear partial differential equations. In: Ganzha, V., Mayr, E., Vorozhtsov, E. (eds.) Computer Algebra in Scientific Computing, CASC 2003, pp. 41–54. Springer, Heidelberg (2003)
[5] Boyer, F., De Nayer, G., Leroyer, A., Visonneau, M.: Geometrically exact Kirchhoff beam theory: application to cable dynamics. J. Comput. Nonlinear Dyn. 6(4), 041004 (2011) · doi:10.1115/1.4003625
[6] Butcher, J., Carminati, J., Vu, K.T.: A comparative study of some computer algebra packages which determine the Lie point symmetries of differential equations. Comput. Phys. Commun. 155, 92–114 (2003) · Zbl 1196.65136 · doi:10.1016/S0010-4655(03)00348-5
[7] Cao, D.Q., Tucker, R.W.: Nonlinear dynamics of elatic rods using the Cosserat theory: modelling and simulation. Int. J. Solids Struct. 45, 460–477 (2008) · Zbl 1167.74467 · doi:10.1016/j.ijsolstr.2007.08.016
[8] Carminati, J., Vu, K.T.: Symbolic computation and differential equations: Lie symmetries. J. Symb. Comput. 29, 95–116 (2000) · Zbl 0958.68543 · doi:10.1006/jsco.1999.0299
[9] Cortez, R.: The method of the regularized stokeslet. SIAM J. Sci. Comput. 23(4), 1204–1225 (2001) · Zbl 1064.76080 · doi:10.1137/S106482750038146X
[10] Cosserat, E., Cosserat, F.: Théorie des corps déformables. Hermann, Paris (1909) · JFM 40.0862.02
[11] Elgeti, J., Winkler, R., Gompper, G.: Physics of microswimmers–single particle motion and collective behavior: a review. Rep. Prog. Phys. 78(5), 056601 (2015) · doi:10.1088/0034-4885/78/5/056601
[12] Goldstein, R.: Green algae as model organisms for biological fluid dynamics. Ann. Rev. Fluid Mech. 47(1), 343–375 (2015) · doi:10.1146/annurev-fluid-010313-141426
[13] Granger, R.: Fluid Mechanics. Dover Classics of Science and Mathematics. Courier Corporation, Mineola (1995) · Zbl 0882.76002
[14] Hereman, W.: Review of symbolic software for Lie symmetry analysis. CRC handbook of Lie group analysis of differential equations. In: Ibragimov, N.H. (ed.) New Trends in Theoretical Developments and Computational Methods, pp. 367–413. CRC Press, Boca Raton (1996)
[15] Lang, H., Linn, J., Arnold, M.: Multibody dynamics simulation of geometrically exact Cosserat rods. In: Berichte des Fraunhofer ITWM, vol. 209 (2011) · Zbl 1271.74264
[16] Michels, D.L., Lyakhov, D.A., Gerdt, V.P., Sobottka, G.A., Weber, A.G.: Lie symmetry analysis for Cosserat rods. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 324–334. Springer, Heidelberg (2014) · Zbl 1417.74014 · doi:10.1007/978-3-319-10515-4_23
[17] Michels, D., Lyakhov, D., Gerdt, V., Sobottka, G., Weber, A.: On the partial analytical solution to the Kirchhoff equation. In: Gerdt, V., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing, CASC 2015, pp. 320–331. Springer, Heidelberg (2015) · Zbl 1434.35002
[18] Michels, D., Mueller, P., Sobottka, G.: A physically based approach to the accurate simulation of stiff fibers and stiff fiber meshes. Comput. Graph. 53B, 136–146 (2015) · doi:10.1016/j.cag.2015.10.001
[19] Oliveri, F.: Lie symmetries of differential equations: classical results and recent contributions. Symmetry 2, 658–706 (2010) · Zbl 1284.22014 · doi:10.3390/sym2020658
[20] Riedel-Kruse, I., Hilfinger, A., Howard, J., Jülicher, F.: How molecular motors shape the flagellar beat. HFSP J. 1(3), 192–208 (2007) · doi:10.2976/1.2773861
[21] Robertz, D.: Formal Algorithmic Elimination for PDEs. Lecture Notes in Mathematics, vol. 2121. Springer, Heidelberg (2014) · Zbl 1339.35007 · doi:10.1007/978-3-319-11445-3
[22] Filho, R.T.M., Figueiredo, A.: [SADE] a Maple package for the symmetry analysis of differential equations. Comput. Phys. Commun. 182, 467–476 (2011) · Zbl 1217.65165 · doi:10.1016/j.cpc.2010.09.021
[23] Seiler, W.M.: Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics. Springer, Heidelberg (2010) · Zbl 1205.35003 · doi:10.1007/978-3-642-01287-7
[24] Thomas, J.M.: Riquier’s existence theorems. Ann. Math. 30, 285–310 (1929). 30, 306–311 (1934) · JFM 55.0874.01 · doi:10.2307/1968282
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.