×

First syzygies of toric varieties and Diophantine equations in congruence. (English) Zbl 1082.13510

Summary: We compute the first syzygies of a subclass of lattice ideals by means of some abstract simplicial complexes. This subclass includes the ideals defining toric varieties. A finite check set containing the minimal first syzygy degrees is determined, and a singly-exponential bound for these degrees is explicited. Integer programming techniques are used, precisely the Hilbert bases for Diophantine equations in congruences.

MSC:

13P99 Computational aspects and applications of commutative rings
13D02 Syzygies, resolutions, complexes and commutative rings
68W30 Symbolic computation and algebraic computation
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
11Y50 Computer solution of Diophantine equations
16S36 Ordinary and skew polynomial rings and semigroup rings

Citations:

Zbl 1042.14024

Software:

GRIN
Full Text: DOI

References:

[1] DOI: 10.1016/0022-4049(94)00140-5 · Zbl 0844.13011 · doi:10.1016/0022-4049(94)00140-5
[2] DOI: 10.1016/S0747-7171(88)80039-7 · Zbl 0667.68053 · doi:10.1016/S0747-7171(88)80039-7
[3] Di Biase F., Experimental Mathematics 4 pp 227– (1995) · Zbl 0860.68062 · doi:10.1080/10586458.1995.10504323
[4] DOI: 10.1016/S0022-4049(96)00106-5 · Zbl 0913.20036 · doi:10.1016/S0022-4049(96)00106-5
[5] Briales E., Collectanea Mathematica 49 pp 239– (1998)
[6] DOI: 10.1016/S0022-4049(97)00051-0 · Zbl 0884.13006 · doi:10.1016/S0022-4049(97)00051-0
[7] Campillo A., Sém. Théor. Nombres Bordeaux 3 pp 249– (1991) · Zbl 0818.20078 · doi:10.5802/jtnb.50
[8] DOI: 10.1006/jabr.1999.8102 · Zbl 0973.14027 · doi:10.1006/jabr.1999.8102
[9] Campillo A., Bull. Soc. Math. Belg. Sér. A 45 pp 45– (1993)
[10] Campillo A., C.R. Acad. Sci. Paris, Série I 316 pp 1303– (1993)
[11] DOI: 10.1006/inco.1994.1067 · Zbl 0809.11015 · doi:10.1006/inco.1994.1067
[12] Domenjoud E., Outils pour la Déduction Automatique dans les Théories Associatives-Commutatives (1991)
[13] Eisembud D., Graduate Texts in Mathematics 150 (1995)
[14] DOI: 10.1007/BF01442864 · JFM 05.0095.01 · doi:10.1007/BF01442864
[15] Hoste S., Integer Programming and Combinatorial Optimization pp 267– (1995) · doi:10.1007/3-540-59408-6_57
[16] DOI: 10.1007/PL00004645 · Zbl 0918.13006 · doi:10.1007/PL00004645
[17] Pisón-Casares P., Preprint of University of Sevilla 43 (1998)
[18] Pottier L., C.R. Acad. Sci. Paris, Série I 311 pp 813– (1990)
[19] Pottier L., Proceedings of the Fourth International Conference on Rewriting Techniques and Applications pp 162– (1991) · doi:10.1007/3-540-53904-2_94
[20] Rosales J. C., PhD Thesis, in: Semigrupos numéricos (1991)
[21] Rosales, J. C. and García-Sánchez, P. A. 1998.Presentaciones de monoides cancelativos130–141. Spain: Proceedings of EACA’98.
[22] Schrijver A., Theory of Linear and Integer Programming (1996) · Zbl 0665.90063
[23] Stanley R., The Wadsworth & Brooks/Cole Mathematics Series, in: Enumerative Combinatorics (1986) · doi:10.1007/978-1-4615-9763-6
[24] Stanley R., Progress in Mathematics 41 (1996)
[25] Tomás A. P., PhD Thesis, in: On Solving Linear Diophantine Constraints (1997)
[26] Sturmfels B., AMS University Lectures Series 8, in: Gröbner Bases and Convex Polytopes (1995) · doi:10.1090/ulect/008
[27] DOI: 10.2748/tmj/1178227496 · Zbl 0714.14034 · doi:10.2748/tmj/1178227496
[28] DOI: 10.1016/S0024-3795(99)00087-7 · Zbl 0939.20061 · doi:10.1016/S0024-3795(99)00087-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.