×

Recurrence properties of superadditive processes and universally good weights. (English) Zbl 07840365

Jha, Sangita (ed.) et al., Recent developments in fractal geometry and dynamical systems. AMS special session. Fractal geometry and dynamical systems, virtual, May 14–15, 2022. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 797, 189-201 (2024).
Summary: In this article recurrence properties of a class of strongly bounded superadditive processes are studied at some length. In particular, four generalizations of Fürstenberg’s multiple recurrence theorem are extended to the setting of such superadditive processes. Having these recurrence properties in hand, it is observed that such superadditive processes define universally good weights for various type of ergodic averages.
For the entire collection see [Zbl 1537.37002].

MSC:

28D05 Measure-preserving transformations
37A99 Ergodic theory
47A35 Ergodic theory of linear operators
60A10 Probabilistic measure theory
Full Text: DOI

References:

[1] Akcoglu, M. A., A ratio ergodic theorem for superadditive processes, Z. Wahrsch. Verw. Gebiete, 269-278, 1978 · Zbl 0386.60045 · doi:10.1007/BF01013192
[2] Bellow, A., The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc., 307-345, 1985 · Zbl 0619.47004 · doi:10.2307/2000442
[3] Bergelson, Vitaly, Descriptive set theory and dynamical systems. The multifarious Poincar\'{e} recurrence theorem, London Math. Soc. Lecture Note Ser., 31-57, 1996, Cambridge Univ. Press, Cambridge · Zbl 0957.05105
[4] Bergelson, Vitaly, Multiple recurrence and nilsequences, Invent. Math., 261-303, 2005 · Zbl 1087.28007 · doi:10.1007/s00222-004-0428-6
[5] \c{C}\"{o}mez, Do\u{g}an, Ergodic averages with generalized weights, Studia Math., 103-128, 2006 · Zbl 1098.28007 · doi:10.4064/sm173-2-1
[6] Eisner, Tanja, Linear sequences and weighted ergodic theorems, Abstr. Appl. Anal., Art. ID 815726, 5 pp., 2013 · Zbl 1417.37053 · doi:10.1155/2013/815726
[7] Furstenberg, Harry, Ergodic behavior of diagonal measures and a theorem of Szemer\'{e}di on arithmetic progressions, J. Analyse Math., 204-256, 1977 · Zbl 0347.28016 · doi:10.1007/BF02813304
[8] Frantzikinakis, Nikos, Ergodic averages for independent polynomials and applications, J. London Math. Soc. (2), 131-142, 2006 · Zbl 1099.37003 · doi:10.1112/S0024610706023374
[9] Host, Bernard, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2), 397-488, 2005 · Zbl 1077.37002 · doi:10.4007/annals.2005.161.397
[10] Kingman, J. F. C., The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc. Ser. B, 499-510, 1968 · Zbl 0182.22802
[11] Leibman, A., Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory Dynam. Systems, 201-213, 2005 · Zbl 1080.37003 · doi:10.1017/S0143385704000215
[12] Lin, Michael, On modulated ergodic theorems for Dunford-Schwartz operators, Illinois J. Math.. Proceedings of the Conference on Probability, Ergodic Theory, and Analysis (Evanston, IL, 1997), 542-567, 1999 · Zbl 0939.47008
[13] Tao, Terence, Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory Dynam. Systems, 657-688, 2008 · Zbl 1181.37004 · doi:10.1017/S0143385708000011
[14] Tao, Terence, Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory Dynam. Systems, 657-688, 2008 · Zbl 1181.37004 · doi:10.1017/S0143385708000011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.