×

Renormalized entropy solutions of scalar conservation laws. (English) Zbl 0965.35021

The authors investigate the Cauchy problem for a scalar conservation law \[ u_t+\text{div}_x\varphi(u)=f \quad \text{on } Q=(0,T)\times{\mathbb R}^n; \tag{1} \]
\[ u(0,x)=u_0(x)\in L^1({\mathbb R}^n). \tag{2} \] The flux vector \(\varphi(u)=(\varphi_1(u),\ldots,\varphi_n(u))\) is assumed to be locally Lipschitz continuous, \(f\in L^1(Q)\). It is known that there is the unique mild solution of the problem under consideration which can be constructed on the base of nonlinear semigroup theory. This solution coincides the generalized entropy solution (in Kruzhkov’s sense) if the function \(u_0\) and \(f\) are bounded but in the general \(L^1\)-setting the function \(\varphi(u)\) may fail to be locally integrable and the equation (1) isn’t correctly defined in the sense of distributions. The authors use an idea of renormalization to generalize the notion of entropy solution. They define a renormalized entropy solution to the problem (1), (2) and prove its existence and uniqueness. It is also shown that the renormalized solution is always the unique mild solution of the problem (1), (2).

MSC:

35D05 Existence of generalized solutions of PDE (MSC2000)
35F25 Initial value problems for nonlinear first-order PDEs
35L60 First-order nonlinear hyperbolic equations
35L65 Hyperbolic conservation laws
35L45 Initial value problems for first-order hyperbolic systems

References:

[1] B. Andreianov - PH. Bénilan - S.N. Kruzhkov , L1 -theory of scalar conservation law with continuous flux function, to appear in J. Funct. Anal. MR 1742856 | Zbl 0944.35048 · Zbl 0944.35048 · doi:10.1006/jfan.1999.3445
[2] L. Barthélemy , Problème d’obstacle pour une équation quasi-linéaire du premier ordre , Ann. Fac. Sci. Toulouse Math. ( 6 ) 9 ( 1988 ), 137 - 159 . Numdam | MR 1425004 | Zbl 0631.47038 · Zbl 0631.47038 · doi:10.5802/afst.653
[3] PH. Bénilan - L. Boccardo - TH. Gallouët - R. Gariepy - M. Pierre - J.-L. Vazquez , An L 1-theory of existence and uniqueness of solutions of nonlinear elliptic equations , Ann. Scuola Norm. Sup. Pisa Cl. Sci. ( 4 ) 22 ( 1995 ), 241 - 273 . Numdam | MR 1354907 | Zbl 0866.35037 · Zbl 0866.35037
[4] PH. Bénilan , ” Equations d’évolution dans un espace de Banach quelconque et applications ”, Thèse d’Etat, Orsay , 1972 .
[5] PH. Bénilan - S.N. Kruzhkov , Conservation laws with continuous flux functions , Nonlinear Differential Equations Appl. 3 ( 1996 ), 395 - 419 . MR 1418588 | Zbl 0961.35088 · Zbl 0961.35088 · doi:10.1007/BF01193828
[6] PH. Bénilan - A. Pazy - M.G. Crandall , ” Nonlinear Evolution Equations in Banach Spaces ”, book to appear. · Zbl 0249.34049
[7] D. Blanchard - F. Murat , Renormalised solutions of nonlinear parabolic problems with L1-data: existence and uniqueness , Proc. Royal Soc. Edinburgh Sect. A 127 ( 1997 ), 1137 - 1152 . MR 1489429 | Zbl 0895.35050 · Zbl 0895.35050 · doi:10.1017/S0308210500026986
[8] D. Blanchard - H. Redwane , Solutions rénormalisées d’équations paraboliques à deux nonlinéarités , C.R. Acad. Sci. Paris Sér. I Math. 319 ( 1994 ), 831 - 835 . MR 1300952 | Zbl 0810.35038 · Zbl 0810.35038
[9] J. Carrillo - P. Wittbold , Scalar conservation laws in L 1 with boundary conditions , in preparation. · Zbl 1026.35069
[10] J. Carrillo - P. Wittbold , Renormalized entropy solutions of quasilinear equations in divergence form , in preparation. · Zbl 1026.35069
[11] M.G. Crandall , The semigroup approach to first order quasilinear equations in several space variables , Israel J. Math. 12 ( 1972 ), 108 - 122 . MR 316925 | Zbl 0246.35018 · Zbl 0246.35018 · doi:10.1007/BF02764657
[12] M.G. Crandall - T. Liggett , Generation of semi-groups of nonlinear transformations in general Banach spaces , Amer. J. Math. 93 ( 1971 ), 265 - 298 . MR 287357 | Zbl 0226.47038 · Zbl 0226.47038 · doi:10.2307/2373376
[13] G. Dal Maso - F. Murat - L. Orsina - A. Prignet , Renormalized solutions of elliptic equations , to appear in Ann. Sc. Norm. Sup. di Pisa . Numdam
[14] G. Dal Maso - F. Murat - L. Orsina - A. Prignet , Definition and existence of renormalized solutions of elliptic equations with general measure data , C. R. Acad. Sci. Paris Sér. I Math. 325 ( 1997 ), 481 - 486 . MR 1692311 | Zbl 0887.35057 · Zbl 0887.35057 · doi:10.1016/S0764-4442(97)88893-3
[15] R.J. Di Perna - P.L. Lions , On the Cauchy problem for Boltzmann equations: global existence and weak stability , Ann. of Math. 130 ( 1989 ), 321 - 366 . MR 1014927 | Zbl 0698.45010 · Zbl 0698.45010 · doi:10.2307/1971423
[16] A. Yu. Goritsky - E. Yu. Panov , Example of Nonuniqueness of Entropy Solutions in the Class of Locally Bounded Functions , Russian Journal of Math. Physics 6 , No. 4 ( 1999 ), 492 - 494 . MR 1815366 | Zbl 1059.35503 · Zbl 1059.35503
[17] S.N. Kruzhkov , Generalized solutions of the Cauchy problem in the large for first-order nonlinear equations , Dokl. Akad. Nauk SSSR 187 ( 1969 ), 29 - 32 ; English tr. in Soviet. Math. Dokl. 10 ( 1969 ), 785 - 788 . MR 249805 | Zbl 0202.37701 · Zbl 0202.37701
[18] S.N. Kruzhkov , First-order quasilinear equations in several independent variables , Mat. Sbornik 81 ( 1970 ), 228 - 255 ; English tr. in Math. USSR Sb. 10 ( 1970 ), 217 - 243 . MR 267257 | Zbl 0215.16203 · Zbl 0215.16203 · doi:10.1070/SM1970v010n02ABEH002156
[19] F. Murat , Soluciones renormalizadas de EDP elipticas no lineales , Publ. Laboratoire d’ Analyse Numérique , Univ. Paris 6, R 93023 ( 1993 ).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.