×

The nonextensive effects on the supersoliton structure in critical plasma state. (English) Zbl 1540.35302

Summary: The support of the nonextensive positrons on novel nonlinear structures like super-solitons, cnoidal, shock profiles, super-shocklikes and super-periodic wave propagation with regard to critical behavior depicted by the MKP equation in plasma pairs with nonextensive electrons and positrons have been studied. Also, some newly solutions as periodical and super-solitary solutions are given by expansion method of Jacobi-elliptic functions (EMJEFs) for MKP form. These formal structures may use to investigate the ionosphere plasmas observations. The method suggested here is explicit, durable and efficacious in the plasma fluids. To discuss the nonextensive effects on the propagating nonlinear profiles, many of the obtained solutions are examined by the nonextensive index in the ionosphere observations.

MSC:

35Q35 PDEs in connection with fluid mechanics
35Q86 PDEs in connection with geophysics
35Q82 PDEs in connection with statistical mechanics
82D10 Statistical mechanics of plasmas
86A10 Meteorology and atmospheric physics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
35C08 Soliton solutions
33E05 Elliptic functions and integrals
Full Text: DOI

References:

[1] Coates, A. J.; Crary, F. J.; Lewis, G. R.; Young, D. T.; Waite, J. H.; Sittler, E. C., Discovery of heavy negative ions in Titan’s ionosphere, Geophys. Res. Lett., 34, 22103, 2007
[2] Horanyi, M., Charged dust dynamics in the solar system, Annu. Rev. Astron. Astrophys., 34, 383, 383, 1996
[3] Malik, H. K.; Malik, R., Unperturbed state and solitary structures in an electron-positron plasma having dust impurity and density inhomogeneity, J. Plasma Phys., 80, 4, 629-641, 2014
[4] Lakhina, G. S.; Verheest, F., Alfvénic solitons in ultrarelativistic electron-positron plasmas, Astrophys. Space Sci., 253, 97, 1997 · Zbl 0923.76354
[5] Vranjes, J.; Petrovic, D.; Pandey, B. P.; Poedts, S., Electrostatic modes in multi-ion and pair-ion collisional plasmas, Phys. Plasmas, 15, Article 072104 pp., 2008
[6] Uddin, M. J.; Alam, M. S.; Mamun, A. A., Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons, Phys. Plasmas, 22, 2, Article 022111 pp., 2015
[7] Oohara, W.; Hatakeyama, R., Basic studies of the generation and collective motion of pair-ion plasmas, Phys. Plasmas, 14, Article 055704 pp., 2007
[8] Shan, S. A.; Hassan, I.; Saleem, H., Electrostatic wave instability and soliton formation with non-thermal electrons in O-H plasma of ionosphere, Phys. Plasmas, 26, 2, Article 022114 pp., 2019
[9] Malik, R.; Malik, H. K.; Kaushick, S. C., Theoretical investigations on propagating and growing modes in a pair plasma having dust grains, Indian J. Phys., 85, 2, 1887-1896, 2011
[10] El-Shewy, E. K.; Abdelwahed, H. G.; Abdo, N. F.; Saleh Yousef, M., On the modulation of ionic velocity in electron-positron-ion plasmas, J. Taibah Univ. Sci., 11, 1267-1274, 2017
[11] Malik, H. K., Terahertz radiation generation by lasers with remarkable efficiency in electron-positron plasma, Phys. Lett. A, 379, 43, 2826-2829, 2015
[12] Abdelwahed, H. G.; El-Shewy, E. K.; Abdelrahman, M. A.E., Positron superthermality effects on the solitonic, dissipative, periodic waveforms for M-Kadomstev-Petviashvilip lasma-equation, Phys. Scr., 95, 10, Article 105204 pp., 2020
[13] Malik, R.; Malik, H. K.; Kaushick, S. C., Soliton propagation in a moving electron-positron pair plasma having negatively charged dust grains, Phys. Plasmas, 19, Article 032107 pp., 2012
[14] Farooq, M.; Mushtaq, A.; Qasim, J., Dissipative ion acoustic solitary waves in collisional, magneto-rotating, non-thermal electron-positron-ion plasma, Contrib. Plasma Phys., 59, 122, 2019
[15] Abdelwahed, H. G.; El-Shewy, E. K.; Mahmoud, A. A., Time fractional effect on ion acoustic shock waves in ion-pair plasma, J. Exp. Theor. Phys., 122, 1111, 2016
[16] Punia, S.; Malik, H. K., Controlling polarization of THz radiation in pair plasma, Plasma Sources. Sci. Technol., 28, 28, 2019, 115018
[17] Punia, S.; Malik, H. K., THz radiation generation in axially magnetized collisional pair plasma, Phys. Lett. A, 383, 15, 1772-1777, 2019
[18] Malik, Hitendra K.; Singh, D.; Kumar, R., Strong Terahertz radiation generation via wakefield in collisional plasma, J. Taibah Univ. Sci., 14, 1279-1287, 2020
[19] Shahzad, K.; Aman-ur Rehman, .; Saleem, H., A study of the non-Maxwellian pair-ion and pair-ion-electron plasmas, Phys. Plasmas, 25, 2, Article 022105 pp., 2018
[20] Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52, 479, 1988 · Zbl 1082.82501
[21] Conroy, J. M.; Miller, H. G., Determining the Tsallis parameter via maximum entropy, Phys. Rev. E, 91, 5, Article 052112 pp., 2015
[22] Kumara, R.; Malik, H. K.; Kawatab, S., Soliton reflection in a plasma with trapped electrons: The effect of dust concentration, Physica D, 240, 3, 310-316, 2011 · Zbl 1215.37048
[23] Kumar, R.; Malik, H. K.; Singh, K., Effect of dust charging and trapped electrons on nonlinear solitary structures in an inhomogeneous magnetized plasma, Phys. Plasmas, 19, Article 012114 pp., 2012
[24] Dhawan, R.; Kumar, M.; Malik, H. K., Influence of ionization on sheath structure in electropositive warm plasma carrying two-temperature electrons with non-extensive distribution, Phys. Plasmas, 27, Article 063515 pp., 2020
[25] Zaghbeer, S. K.; Salah, H. H.; Sheta, N. H.; El-Shewy, E. K.; Elgarayh, A., Effect of nonextensive electron and ion on dust acoustic rogue waves in dusty plasma of opposite polarity, Astrophys. Space Sci., 353, 2, 493, 2014
[26] El-Taibany, W. F.; El-Siragy, N. M.; Behery, E. E.; El-Bendary, A. A.; Taha, R. M., Dust acoustic waves in a dusty plasma containing hybrid Cairns-Tsallis-distributed electrons and variable size dust grains, Chin. J. Phys., 58, 151-158, 2019
[27] Tamang, J.; Sarkar, K.; Saha, A., Solitary wave solution and dynamic transition of dust ion acoustic waves in a collisional nonextensive dusty plasma with ionization effect, Physica A, 505, 18-34, 2018 · Zbl 1514.76131
[28] Abdelwahed, H. G.; El-Shewy, E. K.; Abdelrahman, M. A.E.; El-Rahman, A. A., Positron nonextensivity contributions on the rational solitonic, periodic, dissipative structures for MKP equation described critical plasmas, Adv. Space Res., 67, 10, 3260-3266, 2021
[29] Rahman, M. H.; Chowdhury, N. A.; Mannan, A.; Rahman, M.; Mamun, A. A., Modulational instability, rogue waves, and envelope solitons in opposite polarity dusty plasmas, Chinese J. Phys., 56, 2061, 2018
[30] Abdelwahed, H. G., Nonlinearity contributions on critical MKP equation, J. Taibah Univ. Sci., 14, 1, 777-782, 2020
[31] Abdelwahed, H. G., Super electron acoustic propagations in critical plasma density, J. Taibah Univ. Sci., 14, 1, 1363-1368, 2020
[32] Abdelwahed, H. G.; Abdelrahman, M. A.E., New nonlinear periodic, solitonic, dissipative waveforms for modified-Kadomstev-Petviashvili-equation in nonthermal positron plasma, Results Phys., 19, Article 103393 pp., 2020
[33] Abdelwahed, H. G.; El-Shewy, E. K.; Abdelrahman, M. A.E.; Alsarhana, A. F., On the physical nonlinear (n+1)-dimensional Schrödinger equation applications, Results Phys., 21, Article 103798 pp., 2020
[34] Sharaf, M. K.; El-Shewy, E. K., Fractional anisotropic diffusion equation in cylindrical brush model, Taibah Univ. Sci., 14, 1416-1420, 2020
[35] Abdelwahed, H. G., Properties of damped cylindrical solitons in nonextensive plasmas, Z. Naturforschung A, 73, 10, 157, 2018
[36] Tamang, J.; Sarkar, K.; Saha, A., Solitary wave solution and dynamic transition of dust ion acoustic waves in a collisional nonextensive dusty plasma with ionization effect, Physica A, 505, 18, 2018 · Zbl 1514.76131
[37] Tamang, J.; Saha, A., Influence of dust-neutral collisional frequency and nonextensivity on dynamic motion of dust-acoustic waves, Waves Random Complex Media, 29, 2019
[38] Wazwaz, A. M., A sine-cosine method for handling nonlinear wave equations, Math. Comput. Modelling, 40, 499-508, 2004 · Zbl 1112.35352
[39] Abdelrahman, M. A.E.; Sohaly, M. A.; Alharbi, Y. F., Fundamental stochastic solutions for the conformable fractional NLSE with spatiotemporal dispersion via exponential distribution, Phys. Scr., 96, Article 125223 pp., 2021
[40] Abdelrahman, M. A.E.; Sohaly, M. A., Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in stochastic input case, Eur. Phys. J. Plus, 132, 339, 2017
[41] Abdelrahman, M. A.E.; Sohaly, M. A., The development of the deterministic nonlinear PDEs in particle physics to stochastic case, Results Phys., 9, 344-350, 2018
[42] Alharbi, Y. F.; Abdelrahman, M. A.E.; Sohaly, M. A.; Ammar, S. I., Disturbance solutions for the long-short-wave interaction system using bi-random Riccati-Bernoulli sub-ODE method, J. Taibah Univ. Sci., 14, 1, 500-506, 2020
[43] Abdelrahman, M. A.E., A note on riccati-Bernoulli sub-ODE method combined with complex transform method applied to fractional differential equations, Nonlinear Eng., 7, 4, 279-285, 2018
[44] Hassan, S. Z.; Abdelrahman, M. A.E., A riccati-Bernoulli sub-ODE method for some nonlinear evolution equations, Int. J. Nonlinear Sci. Numer. Simul., 20, 3-4, 303-313, 2019 · Zbl 1476.35238
[45] Hassan, S. Z.; Abdelrahman, M. A.E., Solitary wave solutions for some nonlinear time fractional partial differential equations, Pramana-J. Phys., 91, 67, 2018
[46] Abdelrahman, M. A.E.; Refaey, H. A.; Alharthi, M. A., Investigation of new waves in chemical engineering, Phys. Scr., 96, 7, Article 075218 pp., 2021
[47] Abdelrahman, M. A.E.; Abdo, N. F., On the nonlinear new wave solutions in unstable dispersive environments, Phys. Scr., 95, 4, Article 045220 pp., 2020
[48] Abdelrahman, M. A.E.; AlKhidhr, H., A robust and accurate solver for some nonlinear partial differential equations and tow applications, Phys. Scr., 95, Article 065212 pp., 2020
[49] Baskonus, H. M.; Bulut, H., New wave behaviors of the system of equations for the ion sound and Langmuir waves, Waves Random Complex Media, 26, 613-625, 2016 · Zbl 1365.78006
[50] Liu, C., Exact solutions for the higher-order nonlinear Schrödinger equation in nonlinear optical fibres, Chaos Solitons Fractals, 23, 949-955, 2005 · Zbl 1069.35085
[51] Zhang, S., Exp-function method for solving Maccari’s system, Phys. Lett. A., 371, 65-71, 2007 · Zbl 1209.65103
[52] Hassan, S. Z.; Alyamani, N. A.; Abdelrahman, M. A.E., A construction of new traveling wave solutions for the 2D Ginzburg-Landau equation, Eur. Phys. J. Plus, 134, 425, 2019
[53] Hosseini, K.; Kumar, D.; Kaplan, M.; Bejarbaneh, E. Y., New exact traveling wave solutions of the unstable nonlinear Schrödinger equations, Commun. Theor. Phys., 68, 761-767, 2017 · Zbl 1382.35269
[54] Bulut, H.; Sulaiman, T. A.; Baskonus, H. M., Optical solitons to the resonant nonlinear Schrödinger equation with both spatio-temporal and inter-modal dispersions under Kerr law nonlinearity, Optik, 163, 49-55, 2018
[55] Wanga, Q.; Chen, Y.; Zhang, H., An extended Jacobi elliptic function rational expansion method and its application to (2+1)-dimensional dispersive long wave equation, Phys. Lett. A, 289, 411-426, 2005 · Zbl 1145.35358
[56] Abdelwahed, H. G.; El-Shewy, E. K.; El-Rahman, A. A.; Abdo, N. F., Cylindrical shock waves in space superthermal fluids, J. Korean Phys. Soc., 75, 693, 2019
[57] Abdelwahed, H. G.; El-Shewy, E. K.; Zahran, M. A.; Elwakil, S. A., On the rogue wave propagation in ion pair superthermal plasma, Phys. Plasmas, 23, Article 022102 pp., 2016
[58] Nakamura, Y.; Tsukabayashi, I., Observation of modified Korteweg-de Vries solitons in a multicomponent plasma with negative ions, Phys. Rev. Lett., 52, 2356, 1984
[59] Tandberg-Hansen, E.; Emslie, A. G., The Physics of Solar Flares, 124, 1988, Cambridge University Press: Cambridge University Press Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.