×

Coexistence states of a three-species cooperating model with diffusion. (English) Zbl 1219.92063

Summary: A Lotka-Volterra three-species time-periodic mutualism model with diffusion is investigated. Some sufficient conditions for the existence and estimates of coexistence states are established. With the assistance of functional analysis methods, some sufficient or necessary results for the existence of positive steady states of the model are presented. Our approach is mainly based on the skills of sub- and super-solutions for a general reaction-diffusion system.

MSC:

92D40 Ecology
35B10 Periodic solutions to PDEs
35K57 Reaction-diffusion equations
93A30 Mathematical modelling of systems (MSC2010)
Full Text: DOI

References:

[1] DOI: 10.1016/0362-546X(94)E0063-M · Zbl 0824.35033 · doi:10.1016/0362-546X(94)E0063-M
[2] DOI: 10.1016/0362-546X(94)E0064-N · Zbl 0824.35034 · doi:10.1016/0362-546X(94)E0064-N
[3] DOI: 10.1137/0521034 · Zbl 0705.92019 · doi:10.1137/0521034
[4] DOI: 10.1016/0362-546X(87)90058-7 · Zbl 0631.92017 · doi:10.1016/0362-546X(87)90058-7
[5] DOI: 10.1007/s10114-004-0467-3 · Zbl 1159.35336 · doi:10.1007/s10114-004-0467-3
[6] DOI: 10.1016/S0893-9659(04)90017-1 · Zbl 1047.35055 · doi:10.1016/S0893-9659(04)90017-1
[7] DOI: 10.1016/j.jmaa.2004.01.026 · Zbl 1052.35081 · doi:10.1016/j.jmaa.2004.01.026
[8] López-Gómez J, Differ. Integral Equ. 5 pp 55– (1992)
[9] DOI: 10.1016/S0362-546X(03)00048-8 · Zbl 1028.35070 · doi:10.1016/S0362-546X(03)00048-8
[10] DOI: 10.1016/S0898-1221(02)00100-1 · Zbl 1125.35364 · doi:10.1016/S0898-1221(02)00100-1
[11] DOI: 10.1016/0362-546X(94)00265-J · Zbl 0856.35038 · doi:10.1016/0362-546X(94)00265-J
[12] DOI: 10.1006/jdeq.1999.3655 · Zbl 0948.35040 · doi:10.1006/jdeq.1999.3655
[13] DOI: 10.1016/S0362-546X(00)85031-2 · Zbl 0953.35013 · doi:10.1016/S0362-546X(00)85031-2
[14] Hess P, Periodic-parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematical Series 247 (1991) · Zbl 0731.35050
[15] DOI: 10.1016/0362-546X(91)90202-C · Zbl 0743.35030 · doi:10.1016/0362-546X(91)90202-C
[16] DOI: 10.1016/S0362-546X(97)82873-8 · Zbl 0871.35051 · doi:10.1016/S0362-546X(97)82873-8
[17] DOI: 10.1006/jmaa.1998.5943 · Zbl 0914.35145 · doi:10.1006/jmaa.1998.5943
[18] DOI: 10.1016/0362-546X(92)90178-H · Zbl 0779.35058 · doi:10.1016/0362-546X(92)90178-H
[19] DOI: 10.1016/j.amc.2006.12.076 · Zbl 1125.35011 · doi:10.1016/j.amc.2006.12.076
[20] DOI: 10.1137/0144080 · Zbl 0562.92012 · doi:10.1137/0144080
[21] DOI: 10.1006/jmaa.1999.6412 · Zbl 0932.35111 · doi:10.1006/jmaa.1999.6412
[22] Schaefer HH, Topological Vector Spaces (1966)
[23] Keener J, Principles of Applied Mathematics (1987)
[24] Zhong CK, Introduction to Nolinear Functional Analysis (2004)
[25] Li LG, Differ. Integral Equ. 4 pp 817– (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.