×

Closed form solution for a semi-infinite crack moving in an infinite orthotropic material with a circular crack breaker under antiplane strain. (English) Zbl 1495.74059

Summary: This study investigates the influence of a circular crack breaker on mode-III deformation behavior of a semi-infinite crack in a homogeneous, elastic orthotropic material subjected to longitudinal shear loads. The Galilean transformation is employed to convert the governing wave equation to Laplace’s equation which is time independent, rendering the problem amenable to analysis within the realm of the classical theory of two-dimensional elasticity. Considering the geometrical configuration of the problem, the analytical solution of the problem is possible if the problem is transformed using the appropriate mapping function. Our construction of a holomorphic function that maps the circular hole into a straight line with the edge terminating at the origin is a novelty which enables the use of integral transform method to obtain an analytic solution of the displacement, leading to closed-form expression for mode-III stress intensity factor, \(K_{111}\). The asymptotic values of the fields are obtained and shown to depend on the radius of the crack breaker. A parametric study shows that, for a fixed loading interval, a crack breaker of larger radius leads to increased stress intensity factor.

MSC:

74R10 Brittle fracture
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
74H35 Singularities, blow-up, stress concentrations for dynamical problems in solid mechanics
74S70 Complex-variable methods applied to problems in solid mechanics
74E10 Anisotropy in solid mechanics

References:

[1] Baker, A.: Fatigue studies related to certification of composite crack patching for primary metallic aircraft structure. Proceedings of the FAA-NASA symposium on the continued Airworthiness of Aircraft structure FAA report no. DOT/ FAA/AR-97/2:313-330, (1997)
[2] Donoghue, PE; Zhuang, Z., A finite element model for crack arrestor design in gas pipelines, Fatig. Fract. Eng. Mater. Struct., 22, 59-66 (2002) · doi:10.1046/j.1460-2695.1999.00139.x
[3] Ghfiri, R.; Amrouche, A.; Imad, A.; Mesmacque, G., Fatigue life estimation after crack repair in 6005 AT-6 aluminium alloy using the cold expansion hole technique, Fatig. Fract. Eng. Mater. Struct., 23, 911-916 (2000) · doi:10.1046/j.1460-2695.2000.00356.x
[4] Makabe, C.; Murdani, A.; Kuniyoshi, K.; Yoshiki, I.; Saimoto, A., Crack-growth arrest by redirecting crack growth by drilling stop holes and inserting pins into them, Eng. Fail. Anal., 16, 475-483 (2009) · doi:10.1016/j.engfailanal.2008.06.009
[5] Ayatollahi, MR; Chamani, RHR, Fatigue life extension by crack repair using stop hole technique under pure mode-1 and mode-11 loading conditions, Int. Colloquium Mech. Fatig. Metals (ICMFM17), 74, 18-21 (2014) · doi:10.1016/j.proeng.2014.06.216
[6] Song, PS; Shieh, YL, Stop hole drilling procedure for fatigue life improvement, Int. J. Fatig., 26, 1333-1339 (2004) · doi:10.1016/j.ijfatigue.2004.04.009
[7] Murdani, A.; Makabe, C.; Saimoto, A.; Irei, Y.; Miyazaki, T., Stress concentration at stop-drilled holes and additional holes, Eng. Fract. Anal., 15, 810-819 (2008) · doi:10.1016/j.engfailanal.2007.11.002
[8] Wu, H.; Imad, A.; Benseddiq, N.; Castro, JTP; Meggiolaro, MA, On the prediction of the residual fatigue life of cracked structures repaired by the stop-hole method, Int. J. Fatig., 32, 670-677 (2010) · doi:10.1016/j.ijfatigue.2009.09.011
[9] Kim, WB, Effect of stop hole on stress intensity factor in crack propagation path, Am. Inst. Phys. Conf. Proc., 1973, 020033-20036 (2018) · doi:10.1063/1.5041417
[10] Matsumoto, R.; Ishikawa, T.; Hattori, A.; Kawano, H.; Yamada, K., Reduction of stress concentration at edge of stop hole by closing crack surface, J. Soc. Mater. Sci., 62, 1, 33-38 (2013) · doi:10.2472/jsms.62.33
[11] Fanni, M.; Fouad, N.; Shabara, MAN; Awad, M., New crack stop hole shape using structural optimizing technique, Ain Shams Eng. J., 6, 987-999 (2015) · doi:10.1016/j.asej.2015.02.010
[12] Chen, NZ, A stop-hole method for marine and offshore structures, Int. J. Fatig., 52, 670-698 (2016) · doi:10.1016/j.ijfatigue.2016.03.010
[13] Nnadi, JN, On the sum of certain convergent series associated with the beta function, Int. J. Math. Educ. Sci. Technol., 35, 897-902 (2004) · doi:10.1080/00207390412331271348
[14] Mousavi, SM; Fariborz, SJ, Anti-plane elastodynamic analysis of cracked graded orthotropic layers with viscous damping, Appl. Math. Model., 36, 1626-1638 (2012) · Zbl 1243.74006 · doi:10.1016/j.apm.2011.09.024
[15] Monfared, MM; Ayatollahi, M.; Bagheri, R., Anti-plane elastodynamic analysis of cracked orthotropic strip, Int. J. Mech. Sci., 53, 1008-1014 (2011) · doi:10.1016/j.ijmecsci.2011.08.008
[16] Singh, A.; Das, S.; Cracium, EM, The effect of thermo-mechanical loading on the edge crack of finite length in an infinite orthotropic strip, Mech. Compos. Mater., 55, 285-296 (2019) · doi:10.1007/s11029-019-09812-1
[17] Norio, H., Stress analysis for an orthotropic elastic half plane with an oblique edge crack and stress intensity factors, Int. J. Acta Mech., 232, 1-16(19) (2021) · Zbl 1476.74133 · doi:10.1007/s00707-020-02894-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.