×

Constructing adaptive generalized polynomial chaos method to measure the uncertainty in continuous models: a computational approach. (English) Zbl 1540.60152

Summary: Due to errors in measurements and inherent variability in the quantities of interest, models based on random differential equations give more realistic results than their deterministic counterpart. The generalized polynomial chaos (gPC) is a powerful technique used to approximate the solution of these equations when the random inputs follow standard probability distributions. But in many cases these random inputs do not have a standard probability distribution. In this paper, we present a step-by-step constructive methodology to implement directly a useful version of adaptive gPC for arbitrary distributions, extending the applicability of the gPC. The paper mainly focuses on the computational aspects, on the implementation of the method and on the creation of a useful software tool. This tool allows the user to easily change the types of distributions and the order of the expansions, and to study their effects on the convergence and on the results. Several examples illustrating the usefulness of the method are included.

MSC:

60H25 Random operators and equations (aspects of stochastic analysis)
60-08 Computational methods for problems pertaining to probability theory

Software:

KernSmooth

References:

[1] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer: Kluwer Boston · Zbl 0802.65122
[2] Arnold, L., Stochastic Differential Equations: Theory and Applications (1974), John Wiley & Sons: John Wiley & Sons New York · Zbl 0278.60039
[3] Bellomo, N.; Riganti, R., Nonlinear Stochastic Systems in Physics and Mechanics (1987), World Scientific: World Scientific Singapore · Zbl 0623.60084
[4] Calbo, G.; Cortés, J. C.; Jódar, L., Mean square power series solution of random linear differential equations, Comput. Math. Appl., 59, 559-572 (2010) · Zbl 1189.34105
[5] Cameron, R. H.; Martin, W. T., The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. of Math., 48, 385-392 (1947) · Zbl 0029.14302
[6] Cortés, J. C.; Jódar, L.; Villafuerte, L., Numerical solution of random differential initial value problems: Multistep methods, Math. Methods Appl. Sci., 34, 63-75 (2011) · Zbl 1206.65019
[7] Debusschere, B. J.; Najm, H. N.; Pébay, P. P.; Knio, O. M.; Ghanem, R. G.; Maître, O. P.L., Numerical challenges in the use of polynomial chaos representations for stochastic processes, SIAM J. Sci. Comput., 26, 698-719 (2004) · Zbl 1072.60042
[8] Ernst, O. G.; Mugler, A.; Starkloff, H. J.; Ullmann, E., On the convergence of generalized polynomial chaos expansions, ESAIM Math. Model. Numer. Anal., 46, 317-339 (2012) · Zbl 1273.65012
[9] Gerritsma, M.; van der Steen, J. B.; Vos, P.; Karniadakis, G., Time-dependent generalized polynomial chaos, J. Comput. Phys., 229, 8333-8363 (2010) · Zbl 1201.65216
[10] Ghanem, R.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (1991), Dover Publications: Dover Publications Mineola, New York · Zbl 0722.73080
[11] Gihman, I. I.; Skorohod, A. V., Stochastic Differential Equations (1972), Springer-Verlag: Springer-Verlag Berlin · Zbl 0242.60003
[14] Jahedi, A.; Ahmadi, G., Application of Wiener-Hermite expansion to non stationary random vibrations of a Duffing oscillator, J. Appl. Mech., 50, 436-442 (1983) · Zbl 0547.73072
[15] Kloeden, P.; Platen, E., Numerical Solution of Stochastic Differential Equations (1999), Springer: Springer Berlin
[16] Kroese, D. P.; Taimre, T.; Botev, Z. I., Handbook of Monte Carlo Methods (2011), Wiley: Wiley Hoboken, New Jersey · Zbl 1213.65001
[17] Loève, M., Probability Theory (1963), Van Nostrand: Van Nostrand Princeton, New Jersey · Zbl 0108.14202
[18] Nayfeh, A. H., Problems in Perturbation (1985), John Wiley & Sons: John Wiley & Sons New York · Zbl 0573.34001
[19] Simonoff, J. S., Smoothing Methods in Statistics (1996), Springer-Verlag: Springer-Verlag New York · Zbl 0859.62035
[20] Soong, T. T., Random Differential Equations in Science and Engineering (1973), Academic Press: Academic Press New York · Zbl 0348.60081
[21] Spanos, P. T.D.; Iwan, W. D., The existence and uniqueness of solution generated by equivalent linearization, Internat. J. Non-Linear Mech., 13, 71-78 (1978) · Zbl 0387.34010
[22] Walpole, R.; Myers, R.; Myers, S., Probability and Statistics for Engineers and Scientists (1998), Prentice Hall: Prentice Hall New Jersey
[23] Wand, M. P.; Jones, M. C., Kernel Smoothing (1995), Chapman & Hall: Chapman & Hall London · Zbl 0854.62043
[24] Weber, A.; Weber, M.; Milligan, P., Modeling epidemics caused by respiratory syncytial virus (RSV), Math. Biosci., 172, 95-113 (2001) · Zbl 0988.92025
[25] Wiener, N., The homogeneous chaos, Amer. J. Math., 60, 897-936 (1938) · JFM 64.0887.02
[26] Xiu, D.; Karniadakis, G., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619-644 (2002) · Zbl 1014.65004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.