×

On admissible singular drifts of symmetric \(\alpha\)-stable process. (English) Zbl 1524.60096

Summary: We consider the problem of existence of a (unique) weak solution to the SDE describing symmetric \(\alpha\)-stable process with a locally unbounded drift \(b:\mathbb{R}^d \rightarrow \mathbb{R}^d, d \geq 3, 1<\alpha <2\). In this paper, \(b\) belongs to the class of weakly form-bounded vector fields, the class providing the \(L^2\) theory of the non-local operator behind the SDE, i.e. \((-\Delta )^{\frac{\alpha}{2}} + b \cdot\nabla\). It contains as proper sub-classes other classes of singular vector fields studied in the literature in connection with this operator, such as the Kato class, the weak \(L^{d/(\alpha -1)}\) class and the Campanato-Morrey class (in general, such \(b\) makes invalid the standard heat kernel estimates in terms of the heat kernel of the fractional Laplacian). We show that the operator \((-\Delta )^{\frac{\alpha}{2}}+b\cdot \nabla\) with weakly form-bounded \(b\) admits a realization as (minus) Feller generator, and that the probability measures determined by the Feller semigroup (uniquely in appropriate sense) admit description as weak solutions to the corresponding SDE. The proof is based on detailed regularity theory of \((-\Delta )^{\frac{\alpha}{2}} + b\cdot\nabla\) in \(L^p, p>d-\alpha +1\).
{© 2022 Wiley-VCH GmbH.}

MSC:

60G52 Stable stochastic processes
47D07 Markov semigroups and applications to diffusion processes

References:

[1] R. F.Bass and Z.‐Q.Chen, Brownian motion with singular drift, Ann. Probab.31 (2003), 791-817. · Zbl 1029.60044
[2] A. G.Belyi and Yu. A.Semënov, On the \(L^p\)‐theory of Schrödinger semigroups. II, Sibirsk. Math. J.31 (1990), 16-26; English transl. in: Siberian Math. Zh. 31 (1991), 540-549. · Zbl 0815.47050
[3] K.Bogdan and T.Jakubowski, Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Comm. Math. Phys.271 (2007), 179-198. · Zbl 1129.47033
[4] B.Böttcher, R.Schilling, and J.Wang, Lévy‐type processes: construction, approximation and sample path properties, Lecture Notes in Math., Springer, 2099; Levy Matters III, Springer Cham, 2013. · Zbl 1384.60004
[5] Z.‐Q.Chen, P.Kim, and R.Song, Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation, Ann. Probab.40 (2012), 2483-2538. · Zbl 1264.60060
[6] Z.‐Q.Chen and L.Wang, Uniqueness of stable processes with drift, Proc. Amer. Math. Soc.144 (2017), 2661-2675. · Zbl 1335.60085
[7] N.Dunford and B. J.Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc.47 (1940), 323-392. · JFM 66.0556.01
[8] E.Hille and R. S.Phillips, Functional analysis and semi‐groups, Amer. Math. Soc., Providence, RI, 1957. · Zbl 0078.10004
[9] N.Jacob, An example of a non‐local, non‐symmetric Dirichlet form, Potential Anal.2 (1993), 245-248. · Zbl 0784.31008
[10] N.Jacob, Markov processes and pseudo differential operators I, World Scientific/Imperial College Press, London, 2001. · Zbl 0987.60003
[11] N.Jacob, Markov processes and pseudo differential operators III, World Scientific/Imperial College Press, London, 2005. · Zbl 1076.60003
[12] N.Jacob and R.Schilling, Fractional derivatives non‐symmetric and time‐dependent Dirichlet forms and the drift form, Z. Anal. Anwend.19 (2000), 801-830. · Zbl 0970.31008
[13] T.Kato, Perturbation theory for linear operators, Springer‐Verlag, Berlin, Heidelberg, 1995. · Zbl 0836.47009
[14] P.Kim and R.Song, Stable process with singular drift, Stochastic Process Appl.124 (2014), 2479-2516. · Zbl 1336.60112
[15] D.Kinzebulatov, A new approach to the \(L^p\)‐theory of \(-\Delta + b\cdot \nabla \), and its applications to Feller processes with general drifts, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5)17 (2017), 685-711. · Zbl 1379.35087
[16] D.Kinzebulatov, Feller generators with measure‐valued drifts, Potential Anal.48 (2018), 207-222. · Zbl 1393.35023
[17] D.Kinzebulatov and Yu. A.Semënov, On the theory of the Kolmogorov operator in the spaces \(L^p\) and \(C_\infty \), Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5) (to appear). · Zbl 1469.31027
[18] D.Kinzebulatov and Yu. A.Semënov, Brownian motion with general drift, Stochastic Process Appl.130 (2020), 2737-2750. · Zbl 1435.60047
[19] D.Kinzebulatov, Yu. A.Semënov, and K.Szczypkowski, Heat kernel of fractional Laplacian with Hardy drift via desingularizing weights, J. Lond. Math. Soc. (2)104 (2021), 1861-1900. · Zbl 1484.35252
[20] T.Komatsu, On the martingale problem for generators of stable processes with perturbations, Osaka J. Math.21 (1984), 113-132. · Zbl 0535.60063
[21] T.Komatsu, Pseudo‐differential operators and Markov processes, J. Math. Soc. Japan36 (1984), 387-418. · Zbl 0539.60081
[22] V. F.Kovalenko, M. A.Perelmuter, and Yu. A.Semënov, Schrödinger operators with \(L^{\frac{1}{2}}_w(R^l )\)‐potentials, J. Math. Phys.22 (1981), 1033-1044. · Zbl 0463.47027
[23] V. F.Kovalenko and Yu. A.Semënov, C_0‐semigroups in \(L^p(\mathbb{R}^d)\) and \(C_\infty (\mathbb{R}^d)\) spaces generated by differential expression \(\Delta +b\cdot \nabla \), Teor. Veroyatnost. i Primenen.35 (1990), 449-458. (Russian); English translation in: Theory Probab. Appl. 35 (1990), 443-453. · Zbl 0778.47031
[24] N. V.Krylov, On diffusion processes with drift in \(L_d\), Probab. Theory Relat. Fields179 (2021), 165-199. · Zbl 1480.60239
[25] N. V.Krylov, On time inhomogeneous stochastic Itô equations with drift in \(L_{d+1}\), Ukrainian Math. J.72 (2021), 1420-1444. · Zbl 1483.60083
[26] V. A.Liskevich and Yu. A.Semënov, Some problems on Markov semigroups, Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras (M.Demuth (ed.) et al., eds.), Mathematical Topics: Advances in Partial Differential Equations, Vol. 11, Akademie Verlag, Berlin (1996), pp. 163-217. · Zbl 0854.47027
[27] E.‐M.Ouhabaz, P.Stollmann, K.‐Th.Sturm, and J.Voigt, The Feller property for absorption semigroups, J. Funct. Anal.138 (1996), 351-378. · Zbl 0883.47029
[28] S. I.Podolynny and N. I.Portenko, On multidimensional stable processes with locally unbounded drift, Random Oper. Stoch. Equ.3 (1995), 113-124. · Zbl 0832.60066
[29] N. I.Portenko, Some perturbations of drift‐type for symmetric stable processes, Random Oper. Stoch. Equ.2 (1994), 211-224. · Zbl 0839.60056
[30] Yu. A.Semënov, Regularity theorems for parabolic equations, J. Funct. Anal.231 (2006), 375-417. · Zbl 1090.35059
[31] J.Voigt, Absorption semigroups, Feller property and Kato class, Oper. Theory Adv. Appl.78 (1995), 389-396. · Zbl 0837.47033
[32] P.Xia, L.Xie, X.Zhang, and G.Zhao, \(L^p(L^q)\)‐theory of stochastic differential equations, Stochastic Process Appl.130 (2020), 5188-5211. · Zbl 1456.60153
[33] K.Yosida, Functional analysis, Springer‐Verlag, Berlin, Heidelberg, 1980. · Zbl 0152.32102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.