×

The KPZ fixed point for discrete time TASEPs. (English) Zbl 1519.82064

Summary: We consider two versions of discrete time totally asymmetric simple exclusion processes (TASEPs) with geometric and Bernoulli hopping probabilities. For the process mixed with these and continuous time dynamics, we obtain a single Fredholm determinant representation for the joint distribution function of particle positions with arbitrary initial data. This formula is a generalization of the recent result by K. Matetski et al. [Acta Math. 227, No. 1, 115–203 (2021; Zbl 1505.82041)] and allows us to take the KPZ scaling limit. For both the discrete time geometric and Bernoulli TASEPs, we show that the distribution functions converge to the one describing the KPZ fixed point.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
82C23 Exactly solvable dynamic models in time-dependent statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics
60J65 Brownian motion

Citations:

Zbl 1505.82041

References:

[1] Baik J and Rains E M 2001 Algebraic aspects of increasing subsequences Duke Math. J.109 1-65 · Zbl 1007.05096 · doi:10.1215/s0012-7094-01-10911-3
[2] Billingsley P 1999 Convergence of Probability Measures (New York: Wiley) Wiley Series in Probability and Statistics · Zbl 0944.60003 · doi:10.1002/9780470316962
[3] Borodin A and Corwin I 2015 Discrete time q-TASEPs Int. Math. Res. Not. IMRN2015 499-537 · Zbl 1310.82030 · doi:10.1093/imrn/rnt206
[4] Borodin A and Ferrari P L 2008 Large time asymptotics of growth models on space-like paths I: PushASEP Electron. J. Probab.13 1380-418 · Zbl 1187.82084 · doi:10.1214/ejp.v13-541
[5] Borodin A and Ferrari P L 2014 Anisotropic growth of random surfaces in 2 + 1 dimensions Commun. Math. Phys.325 603-84 · Zbl 1303.82015 · doi:10.1007/s00220-013-1823-x
[6] Borodin A, Ferrari P L and Prähofer M 2007 Fluctuation in the discrete TASEP with periodic initial configurations and the Airy1 process Int. Math. Res. Pap. IMRP2007 1-47 · Zbl 1136.82321 · doi:10.1093/imrp/rpm002
[7] Borodin A, Ferrari P L, Prähofer M and Sasamoto T 2007 Fluctuation properties of the TASEP with periodic initial configuration J. Stat. Phys.129 1055-80 · Zbl 1136.82028 · doi:10.1007/s10955-007-9383-0
[8] Borodin A, Ferrari P L and Sasamoto T 2008 Large time asymptotics of growth models on space-like paths II: PNG and parallel TASEP Commun. Math. Phys.283 417-49 · Zbl 1201.82030 · doi:10.1007/s00220-008-0515-4
[9] Borodin A and Petrov L 2018 Higher spin six vertex model and symmetric rational functions Selecta Mathematica24 751-874 · Zbl 1405.60141 · doi:10.1007/s00029-016-0301-7
[10] Borodin A and Gorin V 2015 Lectures on integrable probability (arXiv:1212.3351)
[11] Corwin I and Petrov L 2016 Stochastic higher spin vertex models on the line Commun. Math. Phys.343 651-700 · Zbl 1348.82055 · doi:10.1007/s00220-015-2479-5
[12] Derbyshev A E, Poghosyan S S, Povolotsky A M and Priezzhev V 2012 The totally asymmetric exclusion process with generalized update J. Stat. Mech. P05014 · Zbl 1456.82706 · doi:10.1088/1742-5468/2012/05/p05014
[13] Imamura T and Sasamoto T 2007 Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition 128 799-846 · Zbl 1136.82029 · doi:10.1007/s10955-007-9326-9
[14] Johansson K 2000 Shape fluctuations and random matrices Commun. Math. Phys.209 437-76 · Zbl 0969.15008 · doi:10.1007/s002200050027
[15] Johansson K 2003 Discrete polynuclear growth and determinantal processes Commun. Math. Phys.242 277-329 · Zbl 1031.60084 · doi:10.1007/s00220-003-0945-y
[16] Kardar M, Parisi G and Zhang Y-C 1986 Dynamic scaling of growing interfaces Phys. Rev. Lett.56 889-92 · Zbl 1101.82329 · doi:10.1103/physrevlett.56.889
[17] Knizel A, Petrov L and Saenz A 2019 Generalizations of TASEP in discrete and continuous inhomogeneous space Commun. Math. Phys.372 797-864 · Zbl 1439.60093 · doi:10.1007/s00220-019-03495-4
[18] Matetski K, Quastel J and Remenik D 2018 The KPZ fixed point (arXiv:1701.00018)
[19] Nagao T and Sasamoto T 2004 Asymmetric simple exclusion process and modified random matrix ensembles Nucl. Phys. B 699 487-502 · Zbl 1123.82345 · doi:10.1016/j.nuclphysb.2004.08.016
[20] Nica M, Quastel J and Remenik D 2020 One-sided reflected Brownian motions and the KPZ fixed point (arXiv:2002.02922) · Zbl 1455.60131
[21] Orr D and Petrov L 2017 Stochastic higher spin six vertex model and q-TASEPs Adv. Math.317 473-525 · Zbl 1379.82016 · doi:10.1016/j.aim.2017.07.003
[22] Pimentel L P R 2019 Brownian aspects of the KPZ fixed point (arXiv:1912.11712) · Zbl 1469.60343
[23] Povolotsky A M and Priezzhev V B 2006 Determinant solution for the totally asymmetric exclusion process with parallel update J. Stat. Mech. P07002 · doi:10.1088/1742-5468/2006/07/p07002
[24] Prähofer M and Spohn H 2000 Universal distributions for growth processes in 1 + 1 dimensions and random matrices Phys. Rev. Lett.84 4882-5 · doi:10.1103/physrevlett.84.4882
[25] Prähofer M and Spohn H 2002 Scale invariance of the PNG droplet and the Airy process J. Stat. Phys.108 1071-106 · Zbl 1025.82010 · doi:10.1023/A:1019791415147
[26] Quastel J and Remenik D 2014 Airy Processes and Variational Problems (New York: Springer) pp 121-71 Springer Proceedings in Mathematics and Statistics vol 69 · Zbl 1329.82059
[27] Quastel J and Remenik D 2019 KP governs random growth off a one dimensional substrate (arXiv:1908.10353)
[28] Quastel J and Matetski K 2017 From the totally asymmetric simple exclusion process to the KPZ fixed point (arXiv:1710.02635)
[29] Rákos A and Schütz G M 2005 Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process J. Stat. Phys.118 511-30 · Zbl 1126.82330 · doi:10.1007/s10955-004-8819-z
[30] Rezakhanlou F 1991 Hydrodynamic limit for attractive particle systems on Z d ” Commun. Math. Phys.140 417-48 · Zbl 0738.60098 · doi:10.1007/bf02099130
[31] Rost H 1981 Non-equilibrium behaviour of a many particle process: density profile and local equilibria Probab. Theory Related Fields58 41-53 · Zbl 0451.60097 · doi:10.1007/bf00536194
[32] Sasamoto T 2005 Spatial correlations of the 1D KPZ surface on a flat substrate J. Phys. A: Math. Gen.38 549-56 · doi:10.1088/0305-4470/38/33/l01
[33] Schütz G M 1997 Exact solution of the master equation for the asymmetric exclusion process J. Stat. Phys.88 427-45 · Zbl 0945.82508 · doi:10.1007/bf02508478
[34] Simon B 2005 Trace Ideals and Their Applications (Providence, RI: American Mathematical Society) Mathematical Surveys and Monographs vol 120 · Zbl 1074.47001
[35] Spitzer F 1970 Interaction of Markov processes Adv. Math.5 246-90 · Zbl 0312.60060 · doi:10.1016/0001-8708(70)90034-4
[36] Warren J and Windridge P 2009 Some examples of dynamics for Gelfand-Tsetlin patterns Electron. J. Probab.14 1745-69 · Zbl 1196.60135 · doi:10.1214/ejp.v14-682
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.