×

Exact correlations in the nonequilibrium stationary state of the noisy Kuramoto model. (English) Zbl 1480.82013

Summary: We obtain exact results on autocorrelation of the order parameter in the nonequilibrium stationary state of a paradigmatic model of spontaneous collective synchronization, the Kuramoto model of coupled oscillators, evolving in presence of Gaussian, white noise. The method relies on an exact mapping of the stationary-state dynamics of the model in the thermodynamic limit to the noisy dynamics of a single, non-uniform oscillator, and allows to obtain besides the Kuramoto model the autocorrelation in the equilibrium stationary state of a related model of long-range interactions, the Brownian mean-field model. Both the models show a phase transition between a synchronized and an incoherent phase at a critical value of the noise strength. Our results indicate that in the two phases as well as at the critical point, the autocorrelation for both the model decays as an exponential with a rate that increases continuously with the noise strength.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
60H40 White noise theory
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
82C27 Dynamic critical phenomena in statistical mechanics

References:

[1] Huang, K., Statistical Mechanics, (1987), New York: Wiley, New York · Zbl 1041.82500
[2] Livi, R.; Politi, P., Nonequilibrium Statistical Physics: a Modern Perspective, (2017), Cambridge: Cambridge University Press, Cambridge · Zbl 1451.82001
[3] Kubo, R., The fluctuation-dissipation theorem, Rep. Prog. Phys., 29, 255, (1966) · Zbl 0163.23102 · doi:10.1088/0034-4885/29/1/306
[4] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: a Universal Concept in Nonlinear Sciences, (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0993.37002
[5] Bier, M.; Bakker, B. M.; Westerhoff, H. V., How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment, Biophys. J., 78, 1087, (2000) · doi:10.1016/S0006-3495(00)76667-7
[6] Buck, J., Synchronous rhythmic flashing of fireflies. II, Q. Rev. Biol., 63, 265, (1988) · doi:10.1086/415929
[7] Wiesenfeld, K.; Colet, P.; Strogatz, S. H., Frequency locking in Josephson arrays: connection with the Kuramoto model, Phys. Rev. E, 57, 1563, (1998) · doi:10.1103/PhysRevE.57.1563
[8] Hirosawa, K.; Kittaka, S.; Oishi, Y.; Kannari, F.; Yanagisawa, T., Phase locking in a Nd:YVO_4 waveguide laser array using Talbot cavity, Opt. Express, 21, 24952, (2013) · doi:10.1364/OE.21.024952
[9] Rohden, M.; Sorge, A.; Timme, M.; Witthaut, D., Self-organized synchronization in decentralized power grids, Phys. Rev. Lett., 109, (2012) · doi:10.1103/PhysRevLett.109.064101
[10] Kuramoto, Y., Chemical Oscillations, Waves and Turbulence, (1984), Berlin: Springer, Berlin · Zbl 0558.76051
[11] Strogatz, S. H., From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143, 1, (2000) · Zbl 0956.00057 · doi:10.1016/S0167-2789(00)00094-4
[12] Acebron, J. A.; Bonilla, L. L.; Vicente, C. J P.; Ritort, F.; Spigler, R., The Kuramoto model: a simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77, 137, (2005) · doi:10.1103/RevModPhys.77.137
[13] Gupta, S.; Campa, A.; Ruffo, S., Kuramoto model of synchronization: equilibrium and nonequilibrium aspects, J. Stat. Mech., (2014) · Zbl 1456.34060 · doi:10.1088/1742-5468/14/08/R08001
[14] Gupta, S.; Campa, A.; Ruffo, S., Statistical Physics of Synchronization, (2018), Berlin: Springer, Berlin · Zbl 1407.82003
[15] Sakaguchi, H., Cooperative phenomena in coupled oscillator systems under external fields, Prog. Theor. Phys., 79, 39, (1988) · doi:10.1143/PTP.79.39
[16] Chavanis, P. H., The Brownian mean field model, Eur. Phys. J. B, 87, 120, (2014) · doi:10.1140/epjb/e2014-40586-6
[17] Antoni, M.; Ruffo, S., Clustering and relaxation in Hamiltonian long-range dynamics, Phys. Rev. E, 52, 2361, (1995) · doi:10.1103/PhysRevE.52.2361
[18] Gupta, S., Spontaneous collective synchronization in the Kuramoto model with additional non-local interactions, J. Phys. A: Math. Theor., 50, (2017) · Zbl 1456.82734 · doi:10.1088/1751-8121/aa88d7
[19] Campa, A.; Dauxois, T.; Fanelli, D.; Ruffo, S., Physics of Long-range Interacting Systems, (2014), Oxford: Oxford University Press, Oxford · Zbl 1303.82003
[20] Papoulis, A., Probability, Random Variables and Stochastic Processes, (1965), New York: McGraw-Hill, New York · Zbl 0191.46704
[21] Strogatz, S. H., Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering, (2014), Boulder, CO: Westview Press, Boulder, CO
[22] Risken, H., The Fokker-Planck Equation: Methods of Solution and Applications, (1996), Berlin: Springer, Berlin · Zbl 0866.60071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.