×

Model reduction of Brownian oscillators: quantification of errors and long-time behavior. (English) Zbl 1518.60057

Summary: A procedure for model reduction of stochastic ordinary differential equations with additive noise was recently introduced in our paper [ibid. 55, No. 50, Article ID 505002, 23 p. (2022; Zbl 1520.34029)], based on the Invariant Manifold method and on the Fluctuation-Dissipation relation. A general question thus arises as to whether one can rigorously quantify the error entailed by the use of the reduced dynamics in place of the original one. In this work we provide explicit formulae and estimates of the error in terms of the Wasserstein distance, both in the presence or in the absence of a sharp time-scale separation between the variables to be retained or eliminated from the description, as well as in the long-time behavior.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35Q20 Boltzmann equations
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35K55 Nonlinear parabolic equations
82C22 Interacting particle systems in time-dependent statistical mechanics

Citations:

Zbl 1520.34029

References:

[1] Bernstein, D. S.; So, W., Some explicit formulas for the matrix exponential, IEEE Trans. Autom. Control, 38, 1228-32 (1993) · Zbl 0784.93036 · doi:10.1109/9.233156
[2] Colangeli, M.; Duong, M. H.; Muntean, A., A reduction scheme for coupled Brownian harmonic oscillators, J. Phys. A: Math. Theor., 55 (2022) · Zbl 1520.34029 · doi:10.1088/1751-8121/acab41
[3] Colangeli, M.; Karlin, I. V.; Kröger, M., Hyperbolicity of exact hydrodynamics for three-dimensional linearized Grad’s equations, Phys. Rev. E, 76 (2007) · doi:10.1103/PhysRevE.76.022201
[4] Colangeli, M.; Kröger, M.; Öttinger, H. C., Boltzmann equation and hydrodynamic fluctuations, Phys. Rev. E, 80 (2009) · doi:10.1103/PhysRevE.80.051202
[5] Colangeli, M.; Muntean, A., Reduced markovian descriptions of brownian dynamics: toward an exact theory, Front. Phys., 10 (2022) · doi:10.3389/fphy.2022.903030
[6] Gorban, A. N.; Karlin, I. V., Invariant Manifolds for Physical and Chemical Kinetics (Lecture Notes in Physics, vol 660) (2005), Springer · Zbl 1086.82009
[7] Gorban, A. N.; Karlin, I. V., Hilbert’s 6th problem: exact and approximate manifolds for kinetic equations, Bull. Am. Math. Soc, 51, 187-246 (2013) · Zbl 1294.35052 · doi:10.1090/S0273-0979-2013-01439-3
[8] Givon, D.; Kupferman, R.; Stuart, A., Extracting macroscopic dynamics: model problems and algorithms, Nonlinearity, 17, R55 (2004) · Zbl 1073.82038 · doi:10.1088/0951-7715/17/6/R01
[9] Ghil, M.; Lucarini, V., The physics of climate variability and climate change, Rev. Mod. Phys., 92 (2020) · doi:10.1103/RevModPhys.92.035002
[10] Gutiérrez, M. S.; Lucarini, V.; Chekroun, M. D.; Ghil, M., Reduced-order models for coupled dynamical systems: Data-driven methods and the Koopman operator, Chaos, 31 (2021) · Zbl 1470.37108 · doi:10.1063/5.0039496
[11] Gomes, S. N.; Pavliotis, G. A., Mean field limits for interacting diffusions in a two-scale potential, J. Nonlinear sci., 28, 905-41 (2018) · Zbl 1394.35494 · doi:10.1007/s00332-017-9433-y
[12] Grad, H., On the kinetic theory of rarefied gases, Comm. Pure Appl. Math., 2, 331-407 (1949) · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[13] Givens, C. R.; Shortt, R. M., A class of Wasserstein metrics for probability distributions, Michigan Math. J., 31, 231-40 (1984) · Zbl 0582.60002 · doi:10.1307/mmj/1029003026
[14] Haken, H., Synergetics. Introduction and Advanced Topics (Graduate Studies in Mathematics) (2004), Springer
[15] Hummel, F.; Ashwin, P.; Kuehn, C., Reduction methods in climate dynamics—a brief review, Physica D, 448 (2023) · Zbl 1509.86001 · doi:10.1016/j.physd.2023.133678
[16] Ijioma, E. R.; Ogawa, T.; Muntean, A.; Fatima, T., Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers, Netw. Heterog. Media, 9, 709-37 (2014) · Zbl 1331.35032 · doi:10.3934/nhm.2014.9.709
[17] Kang, H-W; Kurtz, T. G., Separation of time-scales and model reduction for stochastic reaction networks, Ann. Appl. Probab., 23, 529-83 (2013) · Zbl 1377.60076 · doi:10.1214/12-AAP841
[18] Pavliotis, G.; Stuart, A., Multiscale Methods: Averaging and Homogenization (2008), Springer Science and Business Media · Zbl 1160.35006
[19] Santambrogio, F., Optimal Transport for Applied Mathematicians, vol 55, p 94 (2015), Birkäuser · Zbl 1401.49002
[20] Soheilifard, R.; Makarov, D. E.; Rodin, G. J., Rigorous coarse-graining for the dynamics of linear systems with applications to relaxation dynamics in proteins, J. Chem. Phys., 135 (2011) · doi:10.1063/1.3613678
[21] Schoffner, S. K.; Schnell, S., The physics of climate variability and climate change, Math. Biosci., 287, 122-9 (2017) · Zbl 1377.92039 · doi:10.1016/j.mbs.2016.09.001
[22] Takatsu, A., Wasserstein geometry of porous medium equation, Ann. Inst. Henri Poincare C, 29, 217-32 (2012) · Zbl 1276.35106 · doi:10.1016/j.anihpc.2011.10.003
[23] Villani, C., Topics in Optimal Transportation (Graduate Studies in Mathematics) (2003), American Mathematical Society · Zbl 1106.90001
[24] Wang, S-W; Kawaguchi, K.; Sasa, S.; Tang, K-H, Entropy production of nanosystems with time scale separation, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.070601
[25] Zwanzig, R., Nonequilibrium Statistical Mechanics (2001), Oxford University Press · Zbl 1267.82001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.