×

Quantum \(f\)-divergences and error correction. (English) Zbl 1230.81007

Rev. Math. Phys. 23, No. 7, 691-747 (2011); erratum ibid. 29, No. 7, Article ID 1792001, 2 p. (2017).
Summary: Quantum \(f\)-divergences are a quantum generalization of the classical notion of \(f\)-divergences, and are a special case of Petz’ quasi-entropies. Many well-known distinguishability measures of quantum states are given by, or derived from, \(f\)-divergences. Special examples include the quantum relative entropy, the Rényi relative entropies, and the Chernoff and Hoeffding measures. Here we show that the quantum \(f\)-divergences are monotonic under substochastic maps whenever the defining function is operator convex. This extends and unifies all previously known monotonicity results for this class of distinguishability measures. We also analyze the case where the monotonicity inequality holds with equality, and extend Petz’ reversibility theorem for a large class of \(f\)-divergences and other distinguishability measures. We apply our findings to the problem of quantum error correction, and show that if a stochastic map preserves the pairwise distinguishability on a set of states, as measured by a suitable \(f\)-divergence, then its action can be reversed on that set by another stochastic map that can be constructed from the original one in a canonical way. We also provide an integral representation for operator convex functions on the positive half-line, which is the main ingredient in extending previously known results on the monotonicity inequality and the case of equality. We also consider some special cases where the convexity of \(f\) is sufficient for the monotonicity, and obtain the inverse Hölder inequality for operators as an application. The presentation is completely self-contained and requires only standard knowledge of matrix analysis.

MSC:

81P16 Quantum state spaces, operational and probabilistic concepts
81P50 Quantum state estimation, approximate cloning
94A17 Measures of information, entropy
62F03 Parametric hypothesis testing

References:

[1] Ali S. M., J. Roy. Statist. Soc. Ser. B 28 pp 131–
[2] DOI: 10.1007/BF01045887 · Zbl 0705.47020 · doi:10.1007/BF01045887
[3] DOI: 10.1103/PhysRevLett.98.160501 · doi:10.1103/PhysRevLett.98.160501
[4] DOI: 10.1007/978-1-4612-0653-8 · doi:10.1007/978-1-4612-0653-8
[5] Bhatia R., Positive Definite Matrices (2007) · Zbl 1125.15300
[6] DOI: 10.1103/PhysRevA.82.062306 · doi:10.1103/PhysRevA.82.062306
[7] DOI: 10.1002/0471200611 · doi:10.1002/0471200611
[8] Csiszár I., Stud. Sci. Math. Hung. 2 pp 299–
[9] DOI: 10.1109/18.370121 · Zbl 0822.94003 · doi:10.1109/18.370121
[10] DOI: 10.1073/pnas.0807965106 · Zbl 1202.81018 · doi:10.1073/pnas.0807965106
[11] Ekeland I., Convex Analysis and Variational Problems (1976) · Zbl 0322.90046
[12] DOI: 10.1007/BF01450679 · Zbl 0473.47011 · doi:10.1007/BF01450679
[13] Hayashi M., Quantum Information: An Introduction (2006)
[14] DOI: 10.1103/PhysRevA.76.062301 · doi:10.1103/PhysRevA.76.062301
[15] DOI: 10.1007/s00220-004-1049-z · Zbl 1126.82004 · doi:10.1007/s00220-004-1049-z
[16] Hiai F., Interdiscip. Inform. Sci. 16 pp 139–
[17] DOI: 10.1007/BF02100287 · Zbl 0756.46043 · doi:10.1007/BF02100287
[18] DOI: 10.1063/1.2872276 · Zbl 1153.81376 · doi:10.1063/1.2872276
[19] DOI: 10.1007/s11005-010-0398-0 · Zbl 1201.46059 · doi:10.1007/s11005-010-0398-0
[20] DOI: 10.1007/s00220-005-1510-7 · Zbl 1156.81325 · doi:10.1007/s00220-005-1510-7
[21] DOI: 10.1142/S0219025706002408 · Zbl 1108.46045 · doi:10.1142/S0219025706002408
[22] DOI: 10.1142/S0129055X10004144 · Zbl 1218.81025 · doi:10.1142/S0129055X10004144
[23] Jenčová A., Acta Sci. Math. (Szeged) 76 pp 27–
[24] DOI: 10.1007/BF01180403 · Zbl 0013.39701 · doi:10.1007/BF01180403
[25] DOI: 10.1063/1.533053 · Zbl 0968.81006 · doi:10.1063/1.533053
[26] Liese F., Convex Statistical Distances (1987) · Zbl 0656.62004
[27] DOI: 10.1109/TIT.2006.881731 · Zbl 1287.94025 · doi:10.1109/TIT.2006.881731
[28] DOI: 10.1007/s11005-004-4072-2 · Zbl 1055.81012 · doi:10.1007/s11005-004-4072-2
[29] DOI: 10.1109/TIT.2011.2110050 · Zbl 1366.81102 · doi:10.1109/TIT.2011.2110050
[30] DOI: 10.1214/08-AOS593 · Zbl 1162.62100 · doi:10.1214/08-AOS593
[31] Ogawa T., IEEE Trans. Inform. Theory 47 pp 2428–
[32] Ohya M., Quantum Entropy and Its Use (2004)
[33] Petz D., Publ. RIMS. Kyoto Univ. 21 pp 781–
[34] DOI: 10.1016/0034-4877(86)90067-4 · Zbl 0629.46061 · doi:10.1016/0034-4877(86)90067-4
[35] DOI: 10.1093/qmath/39.1.97 · Zbl 0644.46041 · doi:10.1093/qmath/39.1.97
[36] DOI: 10.1142/S0129055X03001576 · Zbl 1134.82303 · doi:10.1142/S0129055X03001576
[37] Petz D., Quantum Information Theory and Quantum Statistics (2008) · Zbl 1145.81002
[38] DOI: 10.3390/e12030304 · Zbl 1229.81054 · doi:10.3390/e12030304
[39] DOI: 10.1063/1.1497701 · Zbl 1060.82006 · doi:10.1063/1.1497701
[40] DOI: 10.1016/0022-1236(72)90004-3 · Zbl 0245.46089 · doi:10.1016/0022-1236(72)90004-3
[41] DOI: 10.1109/TIT.2009.2032797 · Zbl 1367.81095 · doi:10.1109/TIT.2009.2032797
[42] DOI: 10.1016/0024-3795(85)90074-6 · Zbl 0645.46042 · doi:10.1016/0024-3795(85)90074-6
[43] DOI: 10.1016/0034-4877(76)90060-4 · Zbl 0355.46040 · doi:10.1016/0034-4877(76)90060-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.