×

A lattice Boltzmann study of the asymmetry effect on the hemodynamics in stented fusiform aneurysms. (English) Zbl 1443.92085

Summary: In this paper, the effect of asymmetric bulges on the hemodynamics in stented fusiform aneurysms under pulsatile Newtonian flow condition has been studied numerically by the lattice Boltzmann method. In order to guarantee the efficiency and accuracy of the method, a domain decomposition technique is also considered. Numerical results show that the flow structures are significantly affected by the asymmetric bulges. For non-stented fusiform aneurysms, the maximum wall shear stress (WSS) and maximum wall pressure are found to occur near the distal end of the aneurysms at peak systole, and the magnitude of peak WSS and wall pressure usually increase along with the increase of the maximum height of the dilated region. In addition, the implantation of a stent can reduce the magnitude of the maximum wall pressure and WSS at the distal end, and a low-porosity stent gives better performance than a high-porosity stent in terms of the reduction. In particular, for stented fusiform aneurysms, the effect of asymmetry on wall pressure is found insignificant. Further, a comparison between pulsatile solution and steady-state solution at peak systole is also presented, and the results show that the difference of WSS near the proximal neck for two conditions is not apparent, while the location of the maximum wall pressure obtained from steady-state condition moves toward downstream in contrast to pulsatile condition, and the maximum WSS at the distal end is underestimated by the condition of steady-state.

MSC:

92C35 Physiological flow
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76M28 Particle methods and lattice-gas methods
76Z05 Physiological flows
Full Text: DOI

References:

[1] Lasheras, J. C., The biomechanics of arterial aneurysms, Annu. Rev. Fluid Mech., 39, 293-319 (2007) · Zbl 1296.76188
[2] Fiorella, D.; Woo, H. H.; Albuquerque, F. C.; Nelson, P. K., Definitive reconstruction of circumferential fusiform intracranial aneurysms with the pipline embolization device, Neurosurgery, 62, 1115-1120 (2008)
[3] Pumar, J. M.; Rivas, S. A., Using Leo Plus stent as flow diverter and endoluminal remodeling in endovascular treatment of intracranial fusiform aneurysms, J. NeuroIntervent. Surg., 5, Suppl 3 (6), ii22-ii27 (2013)
[4] Yu, S. C.M.; Zhao, J. B., A steady flow analysis on the stented and non-stented sidewall aneurysm models, Med. Eng. Phys., 21, 3, 133-141 (1999)
[5] Budwig, R.; Elger, D.; Hooper, H., Steady flow in abdominal aortic aneurysm models, J. Biomech. Eng., 115, 4A, 418-423 (1993)
[6] Peattie, R. A.; Riehle, T. J.; Bluth, E. I., Pulsatile flow in fusiform models of abdominal aortic aneurysms: flow fields, velocity patterns and flow induced wall stresses, J. Biomech. Eng., 126, 438-446 (2004)
[7] Rhee, K.; Han, M. H.; Sang, H. C., Changes of flow characteristics by stenting in aneurysm models: Influence of aneurysm geometry and stent porosity, Ann. Biomed. Eng., 30, 7, 894-904 (2002)
[8] Sacks, M. S.; Vorp, D. A.; Raghavan, M. L., In vivo three-dimensional surface geometry of abdominal aortic aneurysms, Ann. Biomed. Eng., 27, 4, 469-479 (1999)
[9] Vorp, D. A.; Raghavan, M. L.; Webster, M. W., Mechanical wall stress in abdominal aortic aneurysm: Influence of diameter and asymmetry, J. Vasc. Surg., 27, 4, 632-639 (1998)
[10] Finol, E. A.; Keyhani, K.; Amon, C. H., The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions, J. Biomech. Eng.-Trans. ASME, 125, 2, 207-271 (2003)
[11] Hirabayashi, M.; Ohta, M.; Rfenacht, D. A.; Chopard, B., A lattice Boltzmann study of blood flow in stented aneurism, Future Gener. Comput. Syst., 20, 6, 925-934 (2004)
[12] Huang, C. S.; Chai, Z. H.; Shi, B. C., Non-Newtonian effect on hemodynamic characteristics of blood flow in stented cerebral aneurysm, Commun. Comput. Phys., 13, 916-928 (2013)
[13] Kim, Y. H.; Xu, X.; Lee, J. S., The effect of stent porosity and strut shape on saccular aneurysm and its numerical analysis with lattice Boltzmann method, Ann. Biomed. Eng., 38, 2274-2292 (2010)
[14] Steiger, H. J.; Poll, A.; Liepsch, D.; Reulen, H. J., Haemodynamic stress in lateral saccular aneurysms, Acta Neurochir., 86, 3-4, 98-105 (1987)
[15] Kim, M.; Taulbee, D. B.; Tremmel, M.; Meng, H., Comparison of two stents in modifying cerebral aneurysm hemodynamics, Ann. Biomed. Eng., 36, 5, 726-741 (2008)
[16] Yu, S. C.M., Steady and pulsatile flow studies in Abdominal Aortic Aneurysm models using Particle Image Velocimetry, Int. J. Heat Fluid Flow, 21, 1, 74-83 (2000)
[17] Finol, E. A.; Amon, C. H., Blood flow in abdominal aortic aneurysms: Pulsatile flow hemodynamics, J. Biomech. Eng.-Trans. ASME, 123, 5, 474-484 (2001)
[18] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329-364 (1998) · Zbl 1398.76180
[19] Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001), Oxford University Press: Oxford University Press USA · Zbl 0990.76001
[20] Guo, Z. L.; Shi, B. C.; Wang, N. C., Lattice BGK model for incompressible Navier-Stokes equation, J. Comput. Phys., 165, 288-306 (2000) · Zbl 0979.76069
[21] Chai, Z. H.; Zhao, T. S., Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor, Phys. Rev. E, 86, Article 016705 pp. (2012)
[22] Stahi, B.; Chopard, B.; Latt, J., Measurements of wall shear stress with the lattice Boltzmann method and staircase approximation of boundaries, Comput. & Fluids, 39, 1625-1633 (2010) · Zbl 1245.76120
[23] Kang, X. Y.; Dun, Z. Y., Accuracy and grid convergence of wall shear stress measured by lattice Boltzmann method, Internat. J. Modern Phys. C, 25, 1450057 (2014)
[24] Guo, W. B.; Wang, N. C.; Shi, B. C.; Guo, Z. L., Lattice-BGK simulation of a two-dimensional channel flow around a square cylinder, Chin. Phys., 12, 67-74 (2003)
[25] Guo, Z. L.; Zheng, C. G.; Shi, B. C., Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method, Chin. Phys., 11, 366-374 (2002)
[26] Yu, D. Z.; Mei, R. W.; Shyy, W., A multi-block lattice Boltzmann method for viscous fluid flows, Internat. J. Numer. Methods Fluids, 39, 99-120 (2002) · Zbl 1036.76051
[27] Geremia, G.; Brack, T.; Brennecke, L.; Haklin, M.; Falter, R., Occlusion of experimentally created fusiform aneurysms with porous metallic sents, Am. J. Neuroradiol., 21, 739-745 (2000)
[28] Lubicz, B.; Collignon, L.; Raphaeli, G.; Witte, O. D., Pipeline flow-diverter stent for endovascular treatment of intracranial aneurysms: Preliminary experience in 20 patients with 27 aneurysms, World Neurosurg., 76, 114-119 (2011)
[29] Piskin, S.; Celebi, M. S., Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis, Comput. Biol. Med., 43, 717-728 (2013)
[30] Stamatopoulos, Ch.; Papaharilaou, Y.; Mathioulakis, D. S.; Katsamouris, A., Steady and unsteady flow within an axisymmetric tube dilatation, Exp. Therm Fluid Sci., 34, 915-927 (2010)
[31] Valencia, A.; Zarate, A.; Galvez, M.; Badilla, L., Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm, Internat. J. Numer. Methods Fluids, 50, 751-764 (2006) · Zbl 1082.92027
[32] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[33] Liou, T. M.; Li, Y. C., Effect of stent porosity on hemodynamics in a sidewall aneurysm model, J. Biomech., 41, 1174-1183 (2008)
[34] Francischelli, B. E.; Tarbell, J. M.; Geselowitz, D. B., Local blood resident times in the Penn State Artifical Heart, Artif. Organs, 15, 218-224 (1991)
[35] Ujiie, H.; Tamano, Y.; Sasaki, K.; Hori, T., Is the aspect ratio a reliable index for predicating the rupture of a saccular aneurysm?, Neurosurgery, 48, 495-503 (2001)
[36] Barath, K.; Cassot, F.; Ohta, M.; Fasel, J. H.D.; Rufenacht, D. A., Influence of stent properties on the alteration of cerebral intra-aneurysmal hemodynamics: flow quantification in elastic sidewall aneurysm models, Neurol. Res., 27, S120-S128 (2005)
[37] Lieber, B. B.; Stancampiano, A. P.; Wakhloo, A. K., Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity, Ann. Biomed. Eng., 25, 460-469 (1997)
[38] Malek, A. M.; Alper, S. L.; Izumo, S., Hemodynamic shear stress and its role in atherosclerosis, JAMA-J. Am. Med. Assoc., 282, 2035-2042 (1999)
[39] Khanafer, K. M.; Gadhoke, P.; Berguer, R.; Bull, J. L., Modeling pulsatile flow in aortic aneurysms: Effect of non-Newtonian properties of blood, Biorheology, 43, 661-679 (2006)
[40] Liu, S. Q.; Goldman, J., Role of blood shear stress in the regulation of vascular smooth muscle cell migration, IEEE Trans. Biomed. Eng., 48, 474-483 (2001)
[41] Nornes, H., The role of intracranial pressure in the arrest of hemorrhage in patients with ruptured intracranial aneurysm, J. Neurosurg., 39, 226-234 (1973)
[42] Sonesson, B.; Dias, N.; Malina, M., Intra-aneurysm pressure measurements in successfully excluded abdominal aortic aneurysm after endovascular repair, J. Vasc. Surg., 37, 733-738 (2003)
[43] Müller, J. D.; Jitsumura, M.; Müller-Kronast, N. H.F., Sensitivity of flow simulations in a cerebral aneurysm, J. Biomech., 45, 2539-2548 (2012)
[44] Mantha, A. R.; Benndorf, G.; Hernandez, A.; Metcalfe, R. W., Stability of pulsatile blood flow at the ostium of cerebral aneurysms, J. Biomech., 42, 1081-1087 (2009)
[45] Shojima, M.; Oshima, M.; Takagi, K., Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms, Stroke, 35, 2500-2505 (2004)
[46] Valen-Sendstad, K.; Mardal, K. A.; Steinman, D. A., High-resolution computational fluid dynamics detects high-frequency velocity fluctuations in bifurcation but, not sidewall aneurysms, of the middle cerebral artery, J. Biomech., 46, 402-407 (2013)
[47] Cebral, J. R.; Mut, F.; Weir, J.; Putman, C. M., Association of hemodynamic characteristics and cerebral aneurysm rupture, Am. J. Neuroradiol., 32, 264-270 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.