×

Design of innovative self-expandable femoral stents using inverse homogenization topology optimization. (English) Zbl 1536.74169

Summary: In this study, we propose a novel computational framework for designing innovative self-expandable femoral stents. First, a two-dimensional stent unit cell is designed by inverse homogenization topology optimization. In particular, the unit cell is optimized in terms of contact area with the target of matching prescribed mechanical properties. The topology optimization is enriched by an anisotropic mesh adaptation strategy, enabling a time- and cost-effective procedure that promotes original layouts. Successively, the optimized stent unit cell is periodically repeated on a hollow cylindrical surface to construct the corresponding three-dimensional device. Finally, structural mechanics and computational fluid dynamics simulations are carried out to verify the performance of the newly-designed stent. The proposed workflow is being tested through the design of five proof-of-concept stents. These devices are compared through specific performance evaluations, which include the assessments of the minimum requirement for usability, namely the ability to be crimped into a catheter, and the quantification of the radial force, the foreshortening, the structural integrity and the induced blood flow disturbances.

MSC:

74P15 Topological methods for optimization problems in solid mechanics

Software:

Ipopt; bamg; FreeFem++

References:

[1] Hejazi, M.; Sassani, F.; Gagnon, J.; Hsiang, Y.; Phani, A. S., Deformation mechanics of self-expanding venous stents: Modelling and experiments. J. Biomech. (2021), arXiv:2102.10219
[2] Jiang, W.; Zhao, W.; Zhou, T.; Wang, L.; Qiu, T., A review on manufacturing and post-processing technology of vascular stents. Micromachines, 1, 140 (2022)
[3] Pan, C.; Han, Y.; Lu, J., Structural design of vascular stents: A review. Micromachines, 7, 770 (2021)
[4] Polanec, B.; Kramberger, J.; Glodež, S., A review of production technologies and materials for manufacturing of cardiovascular stents. Adv. Prod. Eng. Manag., 4, 390-402 (2020)
[5] Duerig, T. W.; Wholey, M., A comparison of balloon- and self-expanding stents. Minim. Invasive Ther. Allied Technol., 4, 173-178 (2002)
[6] Schmidt, T.; Abbott, J. D., Coronary stents: History, design, and construction. J. Clin. Med., 6, 126 (2018)
[7] Kim, W.; Choi, D., Treatment of femoropopliteal artery in-stent restenosis. Korean Circ. J., 3, 191-197 (2018)
[8] Shlofmitz, E.; Iantorno, M.; Waksman, R., Restenosis of drug-eluting stents: A new classification system based on disease mechanism to guide treatment and state-of-the-art review. Circ. Cardiovasc. Inter., 8 (2019)
[9] Tomberli, B.; Mattesini, A.; Baldereschi, G. I.; Di Mario, C., A brief history of coronary artery stents. Rev. Esp. Cardiol., 5, 312-319 (2018)
[10] Kareem, A. K.; Gabir, M. M.; Ali, I. R.; Ismail, A. E.; Taib, I.; Darlis, N.; Almoayed, O. M., A review on femoropopliteal arterial deformation during daily lives and nickel-titanium stent properties. J. Med. Eng. Technol., 4, 300-317 (2022)
[11] Qiao, A.; Zhang, Z., Numerical simulation of vertebral artery stenosis treated with different stents. J. Biomech. Eng., 4 (2014)
[12] Byrne, R. A.; Joner, M.; Kastrati, A., Stent thrombosis and restenosis: What have we learned and where are we going? The Andreas Grüntzig lecture ESC 2014. Eur. Heart J., 47, 3320-3331 (2015)
[13] Reejhsinghani, R.; Lotfi, A. S., Prevention of stent thrombosis: Challenges and solutions. Vasc. Health Risk Manage., 93-106 (2015)
[14] Morrison, T. M.; Dreher, M. L.; Nagaraja, S.; Angelone, L. M.; Kainz, W., The role of computational modeling and simulation in the total product life cycle of peripheral vascular devices. J. Med. Devices, 2 (2017)
[15] Morrison, T. M.; Pathmanathan, P.; Adwan, M.; Margerrison, E., Advancing regulatory science with computational modeling for medical devices at the FDA’s office of science and engineering laboratories. Front. Med., 241 (2018)
[16] Alaimo, G.; Auricchio, F.; Conti, M.; Zingales, M., Multi-objective optimization of nitinol stent design. Med. Eng. Phys., 13-24 (2017)
[17] Clune, R.; Kelliher, D.; Robinson, J. C.; Campbell, J. S., NURBS modeling and structural shape optimization of cardiovascular stents. Struct. Multidiscip. Optim., 1, 159-168 (2014)
[18] Masoumi Khalil Abad, E.; Pasini, D.; Cecere, R., Shape optimization of stress concentration-free lattice for self-expandable Nitinol stent-grafts. J. Biomech., 6, 1028-1035 (2012)
[19] Pant, S.; Limbert, G.; Curzen, N. P.; Bressloff, N. W., Multiobjective design optimisation of coronary stents. Biomaterials, 31, 7755-7773 (2011)
[20] Pant, S.; Bressloff, N. W.; Limbert, G., Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomech. Model. Mechanobiol., 1-2, 61-82 (2012)
[21] Ribeiro, N. S.; Folgado, J.; Rodrigues, H. C., Surrogate-based multi-objective design optimization of a coronary stent: Altering geometry toward improved biomechanical performance. Int. J. Numer. Method. Biomed. Eng., 6 (2021)
[22] Wu, W.; Petrini, L.; Gastaldi, D.; Villa, T.; Vedani, M.; Lesma, E.; Previtali, B.; Migliavacca, F., Finite element shape optimization for biodegradable magnesium alloy stents. Ann. Biomed. Eng., 9, 2829-2840 (2010)
[23] Torki, M. M.; Hassanajili, S.; Jalisi, M. M., Design optimizations of PLA stent structure by FEM and investigating its function in a simulated plaque artery. Math. Comput. Simulation, 103-116 (2020) · Zbl 1510.92070
[24] Čanić, S.; Grubišić, L.; Lacmanović, D.; Ljulj, M.; Tambača, J., Optimal design of vascular stents using a network of 1D slender curved rods. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.74228
[25] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods and Applications (2004), Springer · Zbl 1059.74001
[26] Wu, W.; Yang, D. Z.; Huang, Y. Y.; Qi, M.; Wang, W. Q., Topology optimization of a novel stent platform with drug reservoirs. Med. Eng. Phys., 9, 1177-1185 (2008)
[27] James, K. A.; Waisman, H., Layout design of a bi-stable cardiovascular stent using topology optimization. Comput. Methods Appl. Mech. Engrg., 869-890 (2016) · Zbl 1425.74375
[28] Xue, H.; Luo, Z.; Brown, T.; Beier, S., Design of self-expanding auxetic stents using topology optimization. Front. Bioeng. Biotechnol., 736 (2020)
[29] Xue, H.; Saha, S. C.; Beier, S.; Jepson, N.; Luo, Z., Topological optimization of auxetic coronary stents considering hemodynamics. Front. Bioeng. Biotechnol. (2021)
[30] Li, H. X.; Shi, W. L.; Tan, Z.; Wang, M. J.; Zhao, D. Y.; Yan, J., Topology optimization for polymeric stent. Struct. Multidiscip. Optim., 7, 194 (2022)
[31] Cheng, C. P.; Wilson, N. M.; Hallett, R. L.; Herfkens, R. J.; Taylor, C. A., In vivo MR angiographic quantification of axial and twisting deformations of the superficial femoral artery resulting from maximum hip and knee flexion. J. Vasc. Interv. Radiol., 6, 979-987 (2006)
[32] MacTaggart, J. N.; Phillips, N. Y.; Lomneth, C. S.; Pipinos, I. I.; Bowen, R.; Timothy Baxter, B.; Johanning, J.; Matthew Longo, G.; Desyatova, A. S.; Moulton, M. J.; Dzenis, Y. A.; Kamenskiy, A. V., Three-dimensional bending, torsion and axial compression of the femoropopliteal artery during limb flexion. J. Biomech., 10, 2249-2256 (2014)
[33] Ferro, N.; Micheletti, S.; Perotto, S., Density-based inverse homogenization with anisotropically adapted elements, 211-221
[34] Koskinas, K. C.; Chatzizisis, Y. S.; Antoniadis, A. P.; Giannoglou, G. D., Role of endothelial shear stress in stent restenosis and thrombosis: Pathophysiologic mechanisms and implications for clinical translation. J. Am. Coll. Cardiol., 15, 1337-1349 (2012)
[35] Károly, D.; Kovács, M.; Terdik, A. A.; Bognár, E., Investigation of metallic surface area of coronary stents. Biomech. Hung. (2013)
[36] Colombo, M.; Corti, A.; Gallo, D.; Colombo, A.; Antognoli, G.; Bernini, M.; McKenna, C.; Berceli, S.; Vaughan, T.; Migliavacca, F.; Chiastra, C., Superficial femoral artery stenting: Impact of stent design and overlapping on the local hemodynamics. Comput. Biol. Med. (2022)
[37] Iso, M., Cardiovascular Implants — Endovascular Devices — Part 2: vascular Stents (2012)
[38] Fda, M., Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems (2010)
[39] Bensoussan, A.; Lions, J. L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures (2011), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI · Zbl 1229.35001
[40] Sigmund, O., Design of Material Structures using Topology Optimization (1994), Technical University of Denmark: Technical University of Denmark Lyngby, Denmark, (Ph.D. thesis) · Zbl 1116.74407
[41] Helnwein, P., Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors. Comput. Methods Appl. Mech. Engrg., 22-23, 2753-2770 (2001) · Zbl 0973.15024
[42] Ern, A.; Guermond, J.-L., Theory and practice of finite elements · Zbl 1122.65111
[43] Allaire, G.; Jouve, F.; Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys., 1, 363-393 (2004) · Zbl 1136.74368
[44] Bendsøe, M.; Sigmund, O., Material interpolation schemes in topology optimization. Arch. Appl. Mech., 635-654 (1999) · Zbl 0957.74037
[45] Sigmund, O.; Petersson, J., Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim., 1, 68-75 (1998)
[46] Micheletti, S.; Perotto, S.; Soli, L., Topology optimization driven by anisotropic mesh adaptation: Towards a free-form design. Comput. Struct., 60-72 (2019)
[47] Ferro, N.; Micheletti, S.; Perotto, S., POD-assisted strategies for structural topology optimization. Comput. Math. Appl., 10, 2804-2820 (2019) · Zbl 1442.65366
[48] Ferro, N.; Micheletti, S.; Perotto, S., Compliance-stress constrained mass minimization for topology optimization on anisotropic meshes. SN Appl. Sci., 7, 1-11 (2020)
[49] di Cristofaro, D.; Galimberti, C.; Bianchi, D.; Ferrante, R.; Ferro, N.; Mannisi, M.; Perotto, S., Adaptive topology optimization for innovative 3D printed metamaterials
[50] Ferro, N.; Perotto, S.; Bianchi, D.; Ferrante, R.; Mannisi, M., Design of cellular materials for multiscale topology optimization: Application to patient-specific orthopedic devices. Struct. Multidiscip. Optim., 3, 79 (2022)
[51] Ferro, N.; Perotto, S.; Gavazzoni, M., A new fluid-based strategy for the connection of non-matching lattice materials. Struct. Multidiscip. Optim., 10, 15 (2022), Paper No. 287
[52] Jensen, K. E., Solving stress and compliance constrained volume minimization using anisotropic mesh adaptation, the method of moving asymptotes and a global p-norm. Struct. Multidiscip. Optim., 4, 831-841 (2016)
[53] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg., 2, 337-357 (1987) · Zbl 0602.73063
[54] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part I. The recovery technique. Internat. J. Numer. Methods Engrg., 7, 1331-1364 (1992) · Zbl 0769.73084
[55] Rodríguez, R., Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differential Equations, 5, 625-635 (1994) · Zbl 0806.73069
[56] Carstensen, C., All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable. Math. Comp., 247, 1153-1165 (2004) · Zbl 1067.65115
[57] Naga, A.; Zhang, Z., A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal., 4, 1780-1800 (2004) · Zbl 1078.65098
[58] Yan, N.; Zhou, A., Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes. Comput. Methods Appl. Mech. Engrg., 32-33, 4289-4299 (2001) · Zbl 0986.65098
[59] Maisano, G.; Micheletti, S.; Perotto, S.; Bottasso, C. L., On some new recovery-based a posteriori error estimators. Comput. Methods Appl. Mech. Engrg., 37-40, 4794-4815 (2006) · Zbl 1168.65406
[60] Micheletti, S.; Perotto, S., Anisotropic adaptation via a Zienkiewicz-Zhu error estimator for 2D elliptic problems, 645-653 · Zbl 1216.65147
[61] Micheletti, S.; Perotto, S., Reliability and efficiency of an anisotropic Zienkiewicz-Zhu error estimator. Comput. Methods Appl. Mech. Engrg., 9-12, 799-835 (2006) · Zbl 1125.65099
[62] Hecht, F., New development in FreeFem++. J. Numer. Math., 3-4, 251-265 (2012) · Zbl 1266.68090
[63] Wächter, A.; Biegler, L. T., On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program., 106, 25-57 (2006) · Zbl 1134.90542
[64] Hecht, F., BAMG: Bidimensional anisotropic mesh generator (2006), https://www.ljll.math.upmc.fr/hecht/ftp/bamg/bamg.pdf
[65] Cheng, S.-W.; Dey, T. K.; Shewchuk, J. R., Delaunay mesh generation · Zbl 1298.65187
[66] Ferro, N.; Micheletti, S.; Perotto, S., An optimization algorithm for automatic structural design. Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1506.74274
[67] Xu, S.; Cai, Y.; Cheng, G., Volume preserving nonlinear density filter based on heaviside functions. Struct. Multidiscip. Optim., 495-505 (2010) · Zbl 1274.74419
[68] Wang, F.; Lazarov, B. S.; Sigmund, O., On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim., 767-784 (2011) · Zbl 1274.74409
[69] Gavazzoni, M.; Ferro, N.; Perotto, S.; Foletti, S., Multi-physics inverse homogenization for the design of innovative cellular materials: Application to thermo-elastic problems. Math. Comput. Appl., 1, 15 (2022)
[70] Capelli, C.; Gervaso, F.; Petrini, L.; Dubini, G.; Migliavacca, F., Assessment of tissue prolapse after balloon-expandable stenting: Influence of stent cell geometry. Med. Eng. Phys., 4, 441-447 (2009)
[71] Chiastra, C.; Grundeken, M. J.; Collet, C.; Wu, W.; Wykrzykowska, J. J.; Pennati, G.; Dubini, G.; Migliavacca, F., Biomechanical impact of wrong positioning of a dedicated stent for coronary bifurcations: A virtual bench testing study. Cardiovasc. Eng. Technol., 3, 415-426 (2018)
[72] Auricchio, F.; Taylor, R. L.; Lubliner, J., Shape-memory alloys: Macromodelling and numerical simulations of the superelastic behavior. Comput. Methods Appl. Mech. Engrg., 3-4, 281-312 (1997) · Zbl 0898.73019
[73] Finotello, A.; Gorla, R.; Brambilla, N.; Bedogni, F.; Auricchio, F.; Morganti, S., Finite element analysis of transcatheter aortic valve implantation: Insights on the modelling of self-expandable devices. J. Mech. Behav. Biomed. Mater., June (2021)
[74] D. Carbonaro, C. Chiastra, U. Morbiducci, A. Audenino, Transcatheter Aortic Valve with Embolic Filter: Experiments and Simulations, in: Convegno Nazionale Di Bioingegneria, 2020, pp. 457-460.
[75] Carbonaro, D.; Gallo, D.; Morbiducci, U.; Audenino, A.; Chiastra, C., In silico biomechanical design of the metal frame of transcatheter aortic valves: Multi-objective shape and cross-sectional size optimization. Struct. Multidiscip. Optim., 4, 1825-1842 (2021)
[76] Petrini, L.; Dordoni, E.; Allegretti, D.; Pott, D.; Kütting, M.; Migliavacca, F.; Pennati, G., Simplified multistage computational approach to assess the fatigue behavior of a niti transcatheter aortic valve during in vitro tests: A proof-of-concept study. J. Med. Devices, 2 (2017)
[77] Chiastra, C.; Mazzi, V.; Lodi Rizzini, M.; Calò, K.; Corti, A.; Acquasanta, A.; De Nisco, G.; Belliggiano, D.; Cerrato, E.; Gallo, D.; Morbiducci, U., Coronary artery stenting affects wall shear stress topological skeleton. J. Biomech. Eng., 6, 1-11 (2022)
[78] Chiastra, C.; Gallo, D.; Tasso, P.; Iannaccone, F.; Migliavacca, F.; Wentzel, J. J.; Morbiducci, U., Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: A computational exploration of the hemodynamic risk. J. Biomech., 79-88 (2017)
[79] Mazzi, V.; De Nisco, G.; Hoogendoorn, A.; Calò, K.; Chiastra, C.; Gallo, D.; Steinman, D. A.; Wentzel, J. J.; Morbiducci, U., Early atherosclerotic changes in coronary arteries are associated with endothelium shear stress contraction/expansion variability. Ann. Biomed. Eng., 9, 2606-2621 (2021)
[80] Mazzi, V.; Morbiducci, U.; Calò, K.; De Nisco, G.; Rizzini, M. L.; Torta, E.; Caridi, G. C.A.; Chiastra, C.; Gallo, D., Wall shear stress topological skeleton analysis in cardiovascular flows: Methods and applications. Mathematics, 7, 720 (2021)
[81] De Nisco, G.; Tasso, P.; Calò, K.; Mazzi, V.; Gallo, D.; Condemi, F.; Farzaneh, S.; Avril, S.; Morbiducci, U., Deciphering ascending thoracic aortic aneurysm hemodynamics in relation to biomechanical properties. Med. Eng. Phys., 119-129 (2020)
[82] Morbiducci, U.; Mazzi, V.; Domanin, M.; De Nisco, G.; Vergara, C.; Steinman, D. A.; Gallo, D., Wall shear stress topological skeleton independently predicts long-term restenosis after carotid bifurcation endarterectomy. Ann. Biomed. Eng., 12, 2936-2949 (2020)
[83] Matsumoto, T.; Matsubara, Y.; Aoyagi, Y.; Matsuda, D.; Okadome, J.; Morisaki, K.; Inoue, K.; Tanaka, S.; Ohkusa, T.; Maehara, Y., Radial force measurement of endovascular stents: Influence of stent design and diameter. Vascular, 2, 171-176 (2016)
[84] Colombo, M.; He, Y.; Corti, A.; Gallo, D.; Ninno, F.; Casarin, S.; Rozowsky, J. M.; Migliavacca, F.; Berceli, S.; Chiastra, C., In-stent restenosis progression in human superficial femoral arteries: Dynamics of lumen remodeling and impact of local hemodynamics. Ann. Biomed. Eng., 9, 2349-2364 (2021)
[85] Colombo, M.; He, Y.; Corti, A.; Gallo, D.; Casarin, S.; Rozowsky, J. M.; Migliavacca, F.; Berceli, S.; Chiastra, C., Baseline local hemodynamics as predictor of lumen remodeling at 1-year follow-up in stented superficial femoral arteries. Sci. Rep., 1, 1613 (2021)
[86] Gundert, T. J.; Shadden, S. C.; Williams, A. R.; Koo, B. K.; Feinstein, J. A.; Ladisa, J. F., A rapid and computationally inexpensive method to virtually implant current and next-generation stents into subject-specific computational fluid dynamics models. Ann. Biomed. Eng., 5, 1423-1437 (2011)
[87] Gundert, T. J.; Marsden, A. L.; Yang, W.; Ladisa, J. F., Optimization of cardiovascular stent design using computational fluid dynamics. J. Biomech. Eng., 1 (2012)
[88] Montemurro, M.; Roiné, T.; Pailhès, J., Multi-scale design of multi-material lattice structures through a CAD-compatible topology optimisation algorithm. Eng. Struct. (2022)
[89] Montemurro, M.; Bertolino, G.; Panettieri, E., Topology optimisation of architected cellular materials from additive manufacturing: Analysis, design, and experiments. Structures, 2220-2239 (2023)
[90] Carbonaro, D.; Zambon, S.; Corti, A.; Gallo, D.; Morbiducci, U.; Audenino, L.; Chiastra, C., Impact of nickel – titanium super-elastic material properties on the mechanical performance of self-expandable transcatheter aortic valves. J. Mech. Behav. Biomed. Mater. (2023)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.