×

Elasto-plastic phase-field analysis of thermal induced-cracking and its application towards metal additive manufacturing. (English) Zbl 07895519

Summary: Metal Additive Manufacturing (MAM) technology has evolved significantly, transitioning from its initial role in rapid prototyping to becoming a pivotal component in manufacturing industries. Renowned for its versatility in product design, tooling, and process planning, MAM production systems face the challenge of understanding the intricate interplay of processing parameters and detecting solidification defects, such as hot cracking and porosities. To address this challenge, we propose a thermomechanical phase-field fracture model for predicting in-situ hot cracking, grounded in thermodynamic consistency. The computational simulation of such a complex process is challenging due to the interactive underlying physics and varying computational scales. To tackle this, we have developed a hierarchical multi-application framework. Initially, the framework activates elements with an adaptive mesh refinement (AMR) strategy to calculate the shape of cladding lines by the laser. Subsequently, another application captures thermal simulation information to calculate thermal strains in 3D shapes while considering cladding geometries. A third application focuses on phase-field fracture to assess the effect of thermal gradient and shrinkage strains in manifesting hot cracking. Considerations extend to shrinkage, thermal strain, and the rapid cooling stage in solidification crack evolution. Staggered time schemes are employed to control time variations between different applications, avoiding the loss of capturing crucial phenomena. Within the model, damage is intricately coupled with thermoelastic plasticity, incorporating informed heat conduction with damage parameters, and temperature-dependent fracture properties. Implemented through the finite element method within the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework, the coupled system of equations scrutinizes the influence of manufacturing process parameters, particularly the effects of laser power and scanning speed, alongside fracture properties. Comparative evaluations with experimental observations illuminate the evolution of thermal-induced cracking during the heating process. This comprehensive exploration aims to advance our understanding of the intricate dynamics governing MAM processes, contributing valuable insights to enhance manufacturing outcomes. Simulation results uncover key features of hot crack formation, shedding light on the fundamental understanding of crack formation mechanisms and process optimization.

MSC:

74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] Ali, Baharin; Heider, Yousef; Markert, Bernd, Residual stresses in gas tungsten arc welding : a novel phase-field thermo-elastoplasticity modeling and parameter treatment framework, Computational Mechanics, 69, 2, 565-587, 2022 · Zbl 07492685 · doi:10.1007/s00466-021-02104-3
[2] Ambati, Marreddy; Gerasimov, Tymofiy; Lorenzis, Laura De, A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 383-405, 2015 · Zbl 1398.74270
[3] Azinpour, Erfan; Cruz, Daniel J.; de Sa, Jose M. C.; Santos, Abel, Phase-field approach in elastoplastic solids: application of an iterative staggered scheme and its experimental validation, Comput. Mech., 68, 2, 255-269, 2021 · Zbl 1480.74283
[4] Azinpour, Erfan; Darabi, Roya; de Sa, Jose Cesar; Santos, Abel; Hodek, Josef; Dzugan, Jan, Fracture analysis in directed energy deposition (DED) manufactured 316l stainless steel using a phase-field approach, Finite Elem. Anal. Des., 177, Article 103417 pp., 2020, URL https://www.sciencedirect.com/science/article/pii/S0168874X20300974
[5] Azinpour, Erfan; Rzepa, Sylwia; Melzer, Daniel; Reis, Ana; Džugan, Ján; de Sa, Jose Cesar, Phase-field ductile fracture analysis of multi-materials and functionally graded composites through numerical and experimental methods, Theor. Appl. Fract. Mech., 125, Article 103906 pp., 2023, URL https://www.sciencedirect.com/science/article/pii/S0167844223001696
[6] Balay, Satish; Abhyankar, Shrirang; Adams, Mark F.; Brown, Jed; Brune, Peter; Buschelman, Kris; Dalcin, Lisandro, PETSc users manual, argonne national laboratory, Comput. Comput. Stat. Sci. Div., 2014, 2014
[7] Bleyer, Jeremy; Alessi, Roberto, Phase-field modeling of anisotropic brittle fracture including several damage mechanisms, Comput. Methods Appl. Mech. Engrg., 336, 213-236, 2018, URL https://www.sciencedirect.com/science/article/pii/S0045782518301373 · Zbl 1440.74354
[8] Borden, Michael J.; Hughes, Thomas J. R.; Landis, Chad M.; Anvari, Amin; Lee, Isaac J., A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Comput. Methods Appl. Mech. Engrg., 312, 130-166, 2016, URL https://www.sciencedirect.com/science/article/pii/S0045782516311069 · Zbl 1439.74343
[9] Borden, Michael J.; Verhoosel, Clemens V.; Scott, Michael A.; Hughes, Thomas J. R.; Landis, Chad M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217-220, 77-95, 2012, URL https://www.sciencedirect.com/science/article/pii/S0045782512000199 · Zbl 1253.74089
[10] Bourdin, Blaise; Francfort, Gilles A.; Marigo, Jean Jacques, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 4, 797-826, 2000, URL https://www.sciencedirect.com/science/article/pii/S0022509699000289 · Zbl 0995.74057
[11] Bourdin, Blaise; jacques Marigo, Jean; Maurini, Corrado; Sicsic, Paul, Morphogenesis and propagation of complex cracks induced by thermal shocks morphogenesis and propagation of complex cracks induced by thermal shocks, Phys. Rev. Lett., 112, Article 014301 pp., 2014
[12] Brnic, Josip, Turkalj, Goran, Canadija, Marko, Lanc, Domagoj, Brcic, Marino, 2015. Study of the Effects of High Temperatures on the Engineering Properties of Steel 42CrMo4. 34, (1) 27-34.
[13] Brogliato, Bernard, Nonsmooth Mechanics, 2006, Springer London, URL http://link.springer.com/10.1007/978-1-4471-0557-2
[14] Chai, Raymond Yeow Chu; Liew, Ricky Chee Leong; Seong Lim, Chin, Investigation on shear strength of AISI 431 martensitic stainless steel subjected to high temperature heating, Mater. Today: Proc., 48, 1885-1891, 2022, URL https://www.sciencedirect.com/science/article/pii/S2214785321061666. Innovative Manufacturing, Mechatronics & Materials Forum 2021
[15] Chen, Lin; Wang, Zhao; Li, Bin; de Borst, René, Computation of the crack opening displacement in the phase-field model, Int. J. Solids Struct., 283, Article 112496 pp., 2023, URL https://www.sciencedirect.com/science/article/pii/S0020768323003931
[16] Darabi, Roya; Azinpour, Erfan; Reis, Ana; de Sa, Jose Cesar, Multi-scale multi-physics phase-field coupled thermo-mechanical approach for modeling of powder bed fusion process, Appl. Math. Model., 122, 572-597, 2023 · Zbl 1525.74006
[17] Darabi, Roya; Ferreira, André; Azinpour, Erfan; de Sa, Jose Cesar; Reis, Ana, Thermal study of a cladding layer of inconel 625 in directed energy deposition (DED) process using a phase-field model, Int. J. Adv. Manuf. Technol., 3975-3993, 2022
[18] Dittmann, Maik; Aldakheel, Fadi; Schulte, Juergen; Schmidt, Felix; Krüger, Melanie; Wriggers, Peter; Hesch, Christian, Phase-field modeling of porous-ductile fracture in non-linear thermo-elasto-plastic solids, Comput. Methods Appl. Mech. Engrg., 361, Article 112730 pp., 2020, URL https://www.sciencedirect.com/science/article/pii/S0045782519306206 · Zbl 1442.74040
[19] Dong, Wen; Jimenez, Xavier A.; To, Albert C., Temperature-dependent modified inherent strain method for predicting residual stress and distortion of Ti6Al4V walls manufactured by wire-arc directed energy deposition, Addit. Manuf., 62, Article 103386 pp., 2023, URL https://www.sciencedirect.com/science/article/pii/S2214860422007758
[20] Elahi, Seyed Mohammad; Tavakoli, Rouhollah; Boukellal, Ahmed Kaci; Isensee, Thomas; Romero, Ignacio; Tourret, Damien, Multiscale simulation of powder-bed fusion processing of metallic alloys, Comput. Mater. Sci., 209, Article 111383 pp., 2022, URL https://www.sciencedirect.com/science/article/pii/S0927025622001604
[21] Feng, Zhili, HENRY GRANJON prize competition winner : Category 2 a computational analysis of thermal and mechanical conditions for weld metal solidification cracking, Weld. World Soudage Dans Monde, 33, 5, 340-347, 1994
[22] Feng, Zeyang; Duan, Qinglin; Bai, Ming; Chen, Songtao; Ma, Jinwei, A regional local level set method for tracking arbitrary 3D crack propagation, Eng. Fract. Mech., 301, Article 110019 pp., 2024, URL https://www.sciencedirect.com/science/article/pii/S0013794424001826
[23] Ferreira, André A.; Darabi, Roya; Sousa, João P.; Cruz, João M.; Reis, Ana R.; Vieira, Manuel F., Optimization of direct laser deposition of a martensitic steel powder (metco 42c) on 42crmo4 steel, Metals, 11, 4, 1-18, 2021
[24] Ferreira, André A.; Emadinia, Omid; Amaral, Rui L.; Cruz, João M.; Reis, Ana R.; Vieira, Manuel F., Mechanical and microstructural characterisation of inconel 625 - AISI 431 steel bulk produced by direct laser deposition, J. Mater. Process. Technol., 306, Article 117603 pp., 2022, URL https://www.sciencedirect.com/science/article/pii/S0924013622001157
[25] Figueredo, Erike; Apolinario, Luis; Santos, Mayara; Silva, Ana; Avila, Díaz; Milton, Lima; Santos, Felipe Tiago, Influence of laser beam power and scanning speed on the macrostructural characteristics of AISI 316L and AISI 431 stainless steel depositions produced by laser cladding process, J. Mater. Eng. Perform., 30, 5, 3298-3312, 2021
[26] Francfort, Gilles A.; Marigo, Jean Jacques, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 8, 1319-1342, 1998, URL https://www.sciencedirect.com/science/article/pii/S0022509698000349 · Zbl 0966.74060
[27] Gago, J. P. De S. R.; Kelly, D. W.; Zienkiewicz, Olgierd; Babuška, Ivo, A posteriori error analysis and adaptive processes in the finite element method: Part II—adaptive mesh refinement, Internat. J. Numer. Methods Engrg., 19, 11, 1621-1656, 1983 · Zbl 0534.65069
[28] Gao, H.; Agarwal, G.; Amirthalingam, M.; Hermans, M. J.M., Hot cracking investigation during laser welding of high-strength steels with multi-scale modelling approach, Sci. Technol. Weld. Join., 23, 4, 287-294, 2018, arXiv:https://doi.org/10.1080/13621718.2017.1384884
[29] Ghanavati, Reza; Naffakh-Moosavy, Homam; Moradi, Mahmoud; Gadalińska, Elżbieta; Saboori, Abdollah, Residual stresses and distortion in additively-manufactured SS316L-IN718 multi-material by laser-directed energy deposition: A validated numerical-statistical approach, J. Manuf. Process., 108, 292-309, 2023, URL https://www.sciencedirect.com/science/article/pii/S1526612523010587
[30] Grutzik, Scott J.; Reedy, Edward D., Crack path selection in thermally loaded borosilicate/steel bibeam specimen, Exp. Mech., 58, 1-10, 2017
[31] Gupta, Abhinav; Krishnan, U. Meenu; Mandal, Tushar Kanti; Chowdhury, Rajib; Nguyen, Vinh Phu, ScienceDirect an adaptive mesh refinement algorithm for phase-field fracture models : Application to brittle, cohesive, and dynamic fracture, Comput. Methods Appl. Mech. Engrg., 399, 115-347, 2022
[32] Hemmati, Ismail; Ocelík, Václav; Hosson, Jeff T. H.M. De, The effect of cladding speed on phase constitution and properties of AISI 431 stainless steel laser deposited coatings, Surf. Coat. Technol., 205, 21, 5235-5239, 2011, URL https://www.sciencedirect.com/science/article/pii/S0257897211005469
[33] Hirshikesh; Schneider, Daniel; Nestler, Britta, Realization of adaptive mesh refinement for phase-field model of thermal fracture within the fenics framework, Eng. Fract. Mech., 293, Article 109676 pp., 2023, URL https://www.sciencedirect.com/science/article/pii/S0013794423006343
[34] Jeong, Sang Guk; Ahn, Soung Yeoul; Kim, Eun Seong; Karthik, Gangaraju Manogna; Baik, Youl; Seong, Daehee; Kim, You Sub; Woo, Wanchuck; Kim, Hyoung Seop, Effect of substrate yield strength and grain size on the residual stress of direct energy deposition additive manufacturing measured by neutron diffraction, Mater. Sci. Eng. A, 851, Article 143632 pp., 2022, URL https://www.sciencedirect.com/science/article/pii/S0921509322010164
[35] Jiang, Chiping; Wu, Xiaofeng; Li, Jia; Song, Fan; Shao, Yingfeng; Xu, Xianghong; Yan, Peng, A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock, Acta Mater., 60, 11, 4540-4550, 2012, URL https://www.sciencedirect.com/science/article/pii/S1359645412003308
[36] Karma, Alain; Kessler, David; Levine, Herbert, Phase-field model of mode III dynamic fracture, Phys. Rev. Lett., 87, 5, 2001, arXiv:0105034v2
[37] Karouanas, Iosif; Foteinopoulos, Panagis; Bikas, Harry; Stavropoulos, Panagiotis, A practical simulation approach for the support of wire arc DED additive manufacturing systems design, Procedia Comput. Sci., 232, 3161-3172, 2024, URL https://www.sciencedirect.com/science/article/pii/S1877050924003107. 5th International Conference on Industry 4.0 and Smart Manufacturing (ISM 2023)
[38] Khorram, Ali; Davoodi Jamaloei, Akbar; Jafari, Abed; Moradi, Mahmoud, Nd:YAG laser surface hardening of AISI 431 stainless steel; mechanical and metallurgical investigation, Opt. Laser Technol., 119, Article 105617 pp., 2019, URL https://www.sciencedirect.com/science/article/pii/S0030399219302786
[39] Kirk, Benjamin S.; Peterson, John W.; Stogner, Roy H.; Carey, Graham F., Libmesh : a C++ library for parallel adaptive mesh refinement/coarsening simulations, Eng. Comput., 22, 3-4, 237-254, 2006
[40] Kitware, ParaView user’s guide, 2011
[41] Kou, Sindo, Welding Metallurgy, 2002, John Wiley & Sons, Inc.
[42] Kuhn, Charlotte; Noll, Timo; Müller, Ralf, On phase field modeling of ductile fracture, GAMM-Mitt., 39, 1, 35-54, 2016, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/gamm.201610003. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.201610003 · Zbl 1397.74027
[43] Li, Yicong; Yu, Tiantang; Xing, Chen; Natarajan, Sundararajan, Modeling quasi-static and dynamic thermo-elastic coupled brittle fracture using an adaptive isogeometric hybrid phase-field method, Finite Elem. Anal. Des., 224, Article 103993 pp., 2023, URL https://www.sciencedirect.com/science/article/pii/S0168874X23000860
[44] Lindsay, Alexander D., Gaston, Derek R., Permann, Cody J., Miller, Jason M., Andrš, David, Slaughter, Andrew E., Kong, Fande, Hansel, Joshua, Carlsen, Robert W., Icenhour, Casey, Harbour, Logan, Giudicelli, Guillaume L., Stogner, Roy H., German, Peter, Badger, Jacob, Biswas, Sudipta, Chapuis, Leora, Green, Christopher, Hales, Jason, Hu, Tianchen, Jiang, Wen, Sang, Yeon, Matthews, Christopher, Miao, Yinbin, Novak, April, Peterson, John W., Prince, Zachary M, Rovinelli, Andrea, Schunert, Sebastian, Schwen, Daniel, Spencer, Benjamin W., Veeraraghavan, Swetha, Recuero, Antonio, Yushu, Dewen, Wang, Yaqi, Wilkins, Andy, Wong, Christopher, 2022. SoftwareX 2 . 0 - MOOSE : Enabling massively parallel multiphysics simulation. 20, 20-22.
[45] Lindsay, Alexander; Stogner, Roy; Gaston, Derek; Schwen, Daniel; Matthews, Christopher; Jiang, Wen; Aagesen, Larry K.; Carlsen, Robert; Kong, Fande; Slaughter, Andrew; Permann, Cody; Martineau, Richard, Automatic differentiation in MetaPhysicL and its applications in MOOSE, Nucl. Technol., 207, 7, 905-922, 2021
[46] Liu, Yaru; Li, An; Cheng, Xu; Zhang, Shuquan; Wang, Huaming, Effects of heat treatment on microstructure and tensile properties of laser melting deposited AISI 431 martensitic stainless steel, Mater. Sci. Eng. A, 666, 27-33, 2016, URL https://www.sciencedirect.com/science/article/pii/S0921509316303756
[47] Lorenzis, Lara De; Ambati, Marreddy; Gerasimov, Tymofiy, Phase-field modeling of ductile fracture, Comput. Mech., April 2015, 2020
[48] Mandal, Tushar Kanti; Nguyen, Vinh Phu; Wu, Jian-Ying; Nguyen-Thanh, Chi; de Vaucorbeil, Alban, Fracture of thermo-elastic solids: Phase-field modeling and new results with an efficient monolithic solver, Comput. Methods Appl. Mech. Engrg., 376, Article 113648 pp., 2021, URL https://www.sciencedirect.com/science/article/pii/S0045782520308331 · Zbl 1506.74362
[49] Miehe, Christian; Aldakheel, Fadi; Raina, Arun, Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory, Int. J. Plast., 84, 1-32, 2016, URL https://www.sciencedirect.com/science/article/pii/S0749641916300602
[50] Miehe, Christian; Hofacker, Martina; Schänzel, Lisa Marie; Aldakheel, Fadi, Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids, Comput. Methods Appl. Mech. Engrg., 294, 486-522, 2015, URL https://www.sciencedirect.com/science/article/pii/S0045782514004435 · Zbl 1423.74837
[51] Miehe, Christian; Hofacker, Martina; Welschinger, Fabian, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45-48, 2765-2778, 2010 · Zbl 1231.74022
[52] Miehe, Christian; Hofacker, Martina; Welschinger, Fabian, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 45, 2765-2778, 2010, URL https://www.sciencedirect.com/science/article/pii/S0045782510001283 · Zbl 1231.74022
[53] Miehe, Christian; Schänzel, Lisa-Marie; Ulmer, Heike, Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput. Methods Appl. Mech. Engrg., 294, 449-485, 2015, URL https://www.sciencedirect.com/science/article/pii/S0045782514004423 · Zbl 1423.74838
[54] Miehe, Christian; Teichtmeister, Stephan; Aldakheel, Fadi, Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2016, 3742015017020150170
[55] Peidong, Li; Dingyu, Li; Qingyuan, Wang; Kun, Zhou, Phase-field modeling of hydro-thermally induced fracture in thermo-poroelastic media, Eng. Fract. Mech., 254, Article 107887 pp., 2021, URL https://www.sciencedirect.com/science/article/pii/S0013794421003192
[56] Permann, Cody J.; Gaston, Derek R.; Andrš, David; Carlsen, Robert W.; Kong, Fande; Lindsay, Alexander D.; Miller, Jason M.; Peterson, John W.; Slaughter, Andrew E.; Stogner, Roy H.; Martineau, Richard C., MOOSE: Enabling massively parallel multiphysics simulation, SoftwareX, 11, Article 100430 pp., 2020, arXiv:1911.04488
[57] Rajasekhar, A.; Reddy, Gankidi Madhusudhan; Mohandas, T.; Murti, V. S.R., Influence of austenitizing temperature on microstructure and mechanical properties of AISI 431 martensitic stainless steel electron beam welds, Mater. Des., 30, 5, 1612-1624, 2009, URL https://www.sciencedirect.com/science/article/pii/S0261306908003762
[58] Ruan, Hui; Rezaei, Shahed; Yang, Yangyiwei; Gross, Dietmar; Xu, Bai-Xiang, A thermo-mechanical phase-field fracture model: Application to hot cracking simulations in additive manufacturing, J. Mech. Phys. Solids, 172, Article 105169 pp., 2023, URL https://www.sciencedirect.com/science/article/pii/S0022509622003453
[59] Samuel, Edwin Isaac; Paulose, Neeta; Nandagopal, MS Giri; Panneer, Selvi; Babu, Narendra, Tensile deformation and work hardening behaviour of AISI 431 martensitic stainless steel at elevated temperatures, 916-926, 2019
[60] Saunders, N.; Guo, Z.; Li, X.; Miodownik, A. P.; Schillé, J., Using JMatPro to model materials properties and behavior, 2003, December
[61] Schwen, Daniel; Aagesen, Larry K.; Peterson, John W.; Tonks, Michael R., Rapid multiphase-field model development using a modular free energy based approach with automatic differentiation in MOOSE/MARMOT, Comput. Mater. Sci., 132, 36-45, 2017, arXiv:1702.06450
[62] Schwen, D.; Jiang, C.; Aagesen, L. K., A sublattice phase-field model for direct CALPHAD database coupling, Comput. Mater. Sci., 195, Article 110466 pp., 2021, URL https://www.sciencedirect.com/science/article/pii/S0927025621001919
[63] Shi, Qianyu; Yu, Hongjun; Guo, Licheng; Hao, Liulei; Huang, Kai, A phase field model with plastic history field for fracture of elasto-plastic materials, Eng. Fract. Mech., 268, Article 108447 pp., 2022, URL https://www.sciencedirect.com/science/article/pii/S0013794422001953
[64] Simo, J. C.; Hughes, Thomas J. R., Computational Inelasticity, 1998, Springer: Springer New York · Zbl 0934.74003
[65] Simo, Juan C.; Miehe, Christian, Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Engrg., 98, 1, 41-104, 1992 · Zbl 0764.73088
[66] Stopyra, Wojciech; Gruber, Konrad; Smolina, Irina; Kurzynowski, Tomasz; Kuźnicka, Bogumiła, Laser powder bed fusion of AA7075 alloy: Influence of process parameters on porosity and hot cracking, Addit. Manuf., 35, Article 101270 pp., 2020, URL https://www.sciencedirect.com/science/article/pii/S2214860420306424
[67] Stumpf, Helmut; Makowski, Jerzy; Górski, Jarosław; Hackl, Klaus, Thermodynamically consistent nonlocal theory of ductile damage, Mech. Res. Commun., 31, 3, 355-363, 2004, URL https://www.sciencedirect.com/science/article/pii/S0093641303001551 · Zbl 1079.74511
[68] Svolos, Lampros; Bronkhorst, Curt A.; Waisman, Haim, Thermal-conductivity degradation across cracks in coupled thermo-mechanical systems modeled by the phase-field fracture method, J. Mech. Phys. Solids, 137, Article 103861 pp., 2020
[69] Svolos, Lampros; Plohr, JeeYeon N.; Manzini, Gianmarco; Mourad, Hashem M., On the convexity of phase-field fracture formulations: Analytical study and comparison of various degradation functions, Int. J. Non-Linear Mech., 150, Article 104359 pp., 2023, URL https://www.sciencedirect.com/science/article/pii/S0020746223000112
[70] Tangella, Raja Gopal; Kumbhar, Pramod; Annabattula, Ratna Kumar, International journal for computational methods in hybrid phase-field modeling of thermo-elastic crack propagation, Int. J. Comput. Methods Eng. Sci. Mech., 23, 1, 29-44, 2022 · Zbl 07881625
[71] Wang, Yaqi; Schunert, Sebastian; Ortensi, Javier; Laboure, Vincent; DeHart, Mark; Prince, Zachary; Kong, Fande; Harter, Jackson; Balestra, Paolo; Gleicher, Frederick, Rattlesnake : A MOOSE-based multiphysics multischeme radiation transport application, Nucl. Technol., 207, 7, 1047-1072, 2021
[72] Weisz-Patrault, Daniel, Fast simulation of temperature and phase transitions in directed energy deposition additive manufacturing, Addit. Manuf., 31, Article 100990 pp., 2020, URL https://www.sciencedirect.com/science/article/pii/S2214860419309972
[73] Weisz-Patrault, Daniel; Margerit, Pierre; Constantinescu, Andrei, Residual stresses in thin walled-structures manufactured by directed energy deposition: In-situ measurements, fast thermo-mechanical simulation and buckling, Addit. Manuf., 56, Article 102903 pp., 2022, URL https://www.sciencedirect.com/science/article/pii/S2214860422002998
[74] Wright, Thomas W., The Physics and Mathematics of Adiabatic Shear Bands, 2002, Cambridge University Press · Zbl 1006.74002
[75] Yin, Bo; Kaliske, Michael, A ductile phase-field model based on degrading the fracture toughness: Theory and implementation at small strain, Comput. Methods Appl. Mech. Engrg., 366, Article 113068 pp., 2020, URL https://www.sciencedirect.com/science/article/pii/S0045782520302528 · Zbl 1442.74024
[76] Yoshioka, Keita; Naumov, Dmitri; Kolditz, Olaf, On crack opening computation in variational phase-field models for fracture, Comput. Methods Appl. Mech. Engrg., 369, Article 113210 pp., 2020, URL https://www.sciencedirect.com/science/article/pii/S0045782520303959 · Zbl 1506.74027
[77] Yue, Zhiying; He, Yanan; Xiang, Fengrui; Wu, Yingwei; Zhang, Jing; Tian, Wenxi; Su, Guanghui, Coupled neutronics, thermal-hydraulics, and fuel performance analysis of dispersion plate-type fuel assembly in a cohesive way, Nucl. Eng. Des., 413, August, Article 112548 pp., 2023
[78] Yushu, Dewen; McMurtrey, Michael D.; Jiang, Wen; Kong, Fande, Directed energy deposition process modeling: A geometry-free thermo-mechanical model with adaptive subdomain construction, Int. J. Adv. Manuf. Technol., 122, 2, 849-868, 2022
[79] Zhang, Tiancheng; Bui, Tinh Quoc; Yu, Tiantang; Li, Yicong; Natarajan, Sundararajan, Quasi-static thermoelastic fracture: Adaptive phase-field modeling with variable-node elements, Theor. Appl. Fract. Mech., 124, Article 103811 pp., 2023, URL https://www.sciencedirect.com/science/article/pii/S0167844223000630
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.