×

High-speed switch-on of a semiconductor gas discharge image converter using optimal control methods. (English) Zbl 1053.82521

Summary: Experiments evidence that optical commutation of current in semiconductor gas discharge devices from a low to a high value may be accompanied by an oscillatory mode of such a transient and by a long effective time for the transition. For a simple two-component model of transport processes in these nonlinear systems, which encounter the main observed features in dynamics, the problem of minimizing the time of switching on the high current state is considered. This problem can be formulated as an optimal control problem with control function provided by a proper temporal variation of the feeding voltage. It is shown that the optimal control can substantially shorten the effective transient time of the process and totally suppress the occurrence of an overshooting in a transient. Optimal control strategies for constraints on control and state variables and for different parameters are presented.

MSC:

82D37 Statistical mechanics of semiconductors
49N99 Miscellaneous topics in calculus of variations and optimal control

Software:

BNDSCO
Full Text: DOI

References:

[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and, E. F. Miscĕnko, The Mathematical Theory of Optimal Processes, Fizmatgiz, Moscow, 1961; English translation, Pergamon Press, New York, 1961.; L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and, E. F. Miscĕnko, The Mathematical Theory of Optimal Processes, Fizmatgiz, Moscow, 1961; English translation, Pergamon Press, New York, 1961. · Zbl 0102.31901
[2] Hestenes, M., Calculus of Variations and Optimal Control Theory (1966) · Zbl 0173.35703
[3] Bryson, A. E.; Ho, Y. C., Applied Optimal Control (1975)
[4] Hartl, R. F.; Sethi, S. P.; Vickson, R. G., A survey of the maximum principles for optimal control problems with state constraints, SIAM Rev., 37, 181 (1995) · Zbl 0832.49013
[5] Pesch, H. J., A practical guide to the solution of real-life optimal control problems, Control Cybernet., 23, 7 (1994) · Zbl 0811.49029
[6] Betts, J. T., Survey of numerical methos for trajectory optimization, J. Guidance Control Dyn., 21, 193 (1998) · Zbl 1158.49303
[7] Haken, H., Synergetics (1978) · Zbl 0447.58032
[8] Schoell, E., Nonequilibrium Phase Transitions in Semiconductors—Self-Organization Induced by Generation and Recombination Processes (1987)
[9] Gorbatyuk, A. V.; Rodin, P. B., Current filaments in bistable semiconductors systems with two global constraints, Z. Phys. B: Condensed Matter, 104, 45 (1997)
[10] Lippi, G. L.; Porta, P. A.; Hoffer, L. M.; Grassi, H., Control of transients in “lethargic” systems, Phys. Rev. E, 59, R32 (1999)
[11] Lippi, G. L.; Barland, S.; Dokhane, N.; Monsieur, F.; Porta, P. A.; Grassi, H.; Hofer, L. M., Phase space techniques for steering laser transients, J. Opt. B: Quantum Semiclass. Opt., 2, 1 (2000)
[12] Lippi, G. L.; Barland, S.; Monsieur, F., Invariant integral and the transition to steady states in separable dynamical systems, Phys. Rev. Lett., 85, 62 (2000)
[13] Schoenbach, K. H.; El-Habachi, A.; Moselhy, M. M.; Shi, W. H.; Stark, R. H., Microhollow cathode discharge excimer lamps, Phys. Plasmas, 7, 2186 (2000)
[14] Sauli, F., Nucl. Instr. Meth. A, 386, 531 (1997)
[15] Astrov, Yu. A.; Portsel, L. M.; Teperick, S. P.; Willebrand, H.; Purwins, H.-G., Speed properties of a semiconductor-discharge gap IR image converter studied with a streak camera system, J. Appl. Phys., 74, 2159 (1993)
[16] Astrov, Yu. A., Dynamic Properties of Discharge Glow in a Device with Resistive Electrode (1988)
[17] Raizer, Y. P., Gas Discharge Physics (1991)
[18] Portsel, L. M.; Astrov, Yu. A.; Reimann, I.; Ammelt, E.; Purwins, H.-G., High speed conversion of infrared images with a planar gas discharge system, J. Appl. Phys., 85, 3960 (1999)
[19] Glansdorff, P.; Prigogine, I., Thermodynamic Theory of Structure, Stability and Fluctuations (1971) · Zbl 0246.73005
[20] Büskens, Ch., Optimierungsmethoden und Sensitivitätsanalyse für Optimale Steuerprozesse mit Steuer- und Zustandsbeschränkungen (1998) · Zbl 0907.49010
[21] Ch. Büskens, and, H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: Adjoint variables, sensitivity analysis and real-time control, in, SQP-Based Direct Discretization Methods for Practical Optimal Control Problems, edited by, V. Schulz, J. Comput. Appl. Math. Elsevier, Amsterdam, 2000, to appear.; Ch. Büskens, and, H. Maurer, SQP-methods for solving optimal control problems with control and state constraints: Adjoint variables, sensitivity analysis and real-time control, in, SQP-Based Direct Discretization Methods for Practical Optimal Control Problems, edited by, V. Schulz, J. Comput. Appl. Math. Elsevier, Amsterdam, 2000, to appear.
[22] H. J. Oberle, and, W. Grimm, BNDSCO—A Program for the Numerical Solution of Optimal Control Problems, Internal Report No. 515-89/22, Institute for Flight Systems Dynamics, DLK, Oberpfaffenhofen, Germany, 1989.; H. J. Oberle, and, W. Grimm, BNDSCO—A Program for the Numerical Solution of Optimal Control Problems, Internal Report No. 515-89/22, Institute for Flight Systems Dynamics, DLK, Oberpfaffenhofen, Germany, 1989.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.