×

Enhancing field emission from a carbon nanotube array by lateral control of electrodynamic force field. (English) Zbl 1170.82446

Summary: Fluctuation of field emission current from carbon nanotubes (CNTs) poses certain difficulties for their use in nano-biomedical X-ray devices and imaging probes. This problem arises due to deformation of the CNTs due to electrodynamic force field and electron-phonon interaction. It is of great importance to have precise control of emitted electron beams very near the CNT tips. In this paper, a new array configuration with stacked array of CNTs is analysed and it is shown that the current density distribution is greatly localised at the middle of the array, that the scatter due to electrodynamic force field is minimised and that the temperature transients are much smaller compared to those in an array with random height distribution.

MSC:

82D99 Applications of statistical mechanics to specific types of physical systems
92C50 Medical applications (general)
Full Text: DOI

References:

[1] DOI: 10.1126/science.269.5230.1550 · doi:10.1126/science.269.5230.1550
[2] DOI: 10.1126/science.270.5239.1179 · doi:10.1126/science.270.5239.1179
[3] DOI: 10.1016/0009-2614(94)01418-U · doi:10.1016/0009-2614(94)01418-U
[4] DOI: 10.1007/s003390050998 · doi:10.1007/s003390050998
[5] DOI: 10.1016/S0008-6223(99)00139-6 · doi:10.1016/S0008-6223(99)00139-6
[6] DOI: 10.1063/1.1367278 · doi:10.1063/1.1367278
[7] DOI: 10.1142/S1793292007000465 · doi:10.1142/S1793292007000465
[8] DOI: 10.1063/1.2186388 · doi:10.1063/1.2186388
[9] DOI: 10.1063/1.1492305 · doi:10.1063/1.1492305
[10] DOI: 10.1002/biof.5520300408 · doi:10.1002/biof.5520300408
[11] DOI: 10.1142/S0217984907014310 · doi:10.1142/S0217984907014310
[12] Melnik R.V.N., J. Comput. Theor. Nanosci. 3 (2006)
[13] Melnik R., J. Nanosci. Nanotechnol. 8 pp 3626– (2008)
[14] DOI: 10.1080/08927020410001659349 · doi:10.1080/08927020410001659349
[15] DOI: 10.1166/jctn.2007.001a · doi:10.1166/jctn.2007.001a
[16] DOI: 10.1088/0957-4484/19/02/025701 · doi:10.1088/0957-4484/19/02/025701
[17] DOI: 10.1016/j.apsusc.2008.06.128 · doi:10.1016/j.apsusc.2008.06.128
[18] DOI: 10.1016/j.compstruc.2007.01.046 · doi:10.1016/j.compstruc.2007.01.046
[19] Sinha N., Lecture Notes in Computer Science, ICCS 2008, Part II, LNCS 5102 pp 197– (2008) · doi:10.1007/978-3-540-69387-1_22
[20] DOI: 10.1109/NANO.2007.4601343 · doi:10.1109/NANO.2007.4601343
[21] Wang M., J. Appl. Phys. 98 (2005)
[22] Chen G., Nanotechnology 19 (2008)
[23] Roy Mahapatra D., NSTI-Nanotech 2008 1 pp 55– (2008)
[24] DOI: 10.1116/1.2402150 · doi:10.1116/1.2402150
[25] DOI: 10.1103/PhysRevB.60.17136 · doi:10.1103/PhysRevB.60.17136
[26] DOI: 10.1016/j.physleta.2004.10.048 · Zbl 1123.82410 · doi:10.1016/j.physleta.2004.10.048
[27] DOI: 10.1109/TNANO.2005.851409 · doi:10.1109/TNANO.2005.851409
[28] DOI: 10.1098/rspa.1928.0091 · JFM 54.0988.03 · doi:10.1098/rspa.1928.0091
[29] Huang Z.P., Encyclopedia of Nanoscience and Nanotechnology 3 pp 401– (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.