×

Bayesian experimental design for head imaging by electrical impedance tomography. (English) Zbl 07906767

Summary: This work considers the optimization of electrode positions in head imaging by electrical impedance tomography. The study is motivated by maximizing the sensitivity of electrode measurements to conductivity changes when monitoring the condition of a stroke patient, which justifies adopting a linearized version of the complete electrode model as the forward model. The algorithm is based on finding a (locally) A-optimal measurement configuration via gradient descent with respect to the electrode positions. The efficient computation of the needed derivatives of the complete electrode model is one of the focal points. Two algorithms are introduced and numerically tested on a three-layer head model. The first one assumes a region of interest and a Gaussian prior for the conductivity in the brain, and it can be run offline, i.e., prior to taking any measurements. The second algorithm first computes a reconstruction of the conductivity anomaly caused by the stroke with an initial electrode configuration by combining lagged diffusivity iteration with sequential linearizations, which can be interpreted to produce an approximate Gaussian probability density for the conductivity perturbation. It then resorts to the first algorithm to find new, more informative positions for the available electrodes with the constructed density as the prior.

MSC:

35Q60 PDEs in connection with optics and electromagnetic theory
62K05 Optimal statistical designs
62F15 Bayesian inference
65F10 Iterative numerical methods for linear systems
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
78A30 Electro- and magnetostatics
78A70 Biological applications of optics and electromagnetic theory
92C55 Biomedical imaging and signal processing
35J25 Boundary value problems for second-order elliptic equations
35R25 Ill-posed problems for PDEs
35R30 Inverse problems for PDEs

References:

[1] Alexanderian, A., Optimal experimental design for infinite-dimensional Bayesian inverse problems governed by PDEs: A review, Inverse Problems, 37 (2021), 043001. · Zbl 1461.62129
[2] Alexanderian, A., Gloor, P. J., Ghattas, O., et al., On Bayesian A- and D-optimal experimental designs in infinite dimensions, Bayesian Anal., 11 (2016), pp. 671-695. · Zbl 1359.62315
[3] Alexanderian, A., Petra, N., Stadler, G., and Ghattas, O., A-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems with regularized \(l_0\)-sparsification, SIAM J. Sci. Comput., 36 (2014), pp. A2122-A2148, doi:10.1137/130933381. · Zbl 1314.62163
[4] Alexanderian, A., Petra, N., Stadler, G., and Ghattas, O., A fast and scalable method for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear inverse problems, SIAM J. Sci. Comput., 38 (2016), pp. A243-A272, doi:10.1137/140992564. · Zbl 06536072
[5] Bardsley, J. M., Computational Uncertainty Quantification for Inverse Problems, , SIAM, Philadelphia, 2018, doi:10.1137/1.9781611975383. · Zbl 1435.60001
[6] Borcea, L., Electrical impedance tomography, Inverse Problems, 18 (2002), pp. R99-R136. · Zbl 1031.35147
[7] Burger, M., Hauptmann, A., Helin, T., Hyvönen, N., and Puska, J.-P., Sequentially optimized projections in X-ray imaging, Inverse Problems, 37 (2014), 0750006.
[8] Calvetti, D. and Somersalo, E., Hypermodels in the Bayesian imaging framework, Inverse Problems, 24 (2008), 034013. · Zbl 1137.62062
[9] Candiani, V., Hannukainen, A., and Hyvönen, N., Computational framework for applying electrical impedance tomography to head imaging, SIAM J. Sci. Comput., 41 (2019), pp. B1034-B1060, doi:10.1137/19M1245098. · Zbl 1428.65066
[10] Candiani, V., Hyvönen, N., Kaipio, J. P., and Kolehmainen, V., Approximation error method for imaging the human head by electrical impedance tomography, Inverse Problems, 37 (2021), 125008. · Zbl 07440653
[11] Candiani, V. and Santacesaria, M., Neural networks for classification of stroke in electrical impedance tomography on a 3D head model, Math. Eng., 4 (2022), pp. 1-22. · Zbl 1498.92104
[12] Chaloner, K. and Verdinelli, I., Bayesian experimental design: A review, Statist. Sci., 10 (1995), pp. 273-304. · Zbl 0955.62617
[13] Chan, T. F. and Mulet, P., On the convergence of the lagged diffusivity fixed point method in total variation image restoration, SIAM J. Numer. Anal., 36 (1999), pp. 354-367, doi:10.1137/S0036142997327075. · Zbl 0923.65037
[14] Cheney, M., Isaacson, D., and Newell, J., Electrical impedance tomography, SIAM Rev., 41 (1999), pp. 85-101, doi:10.1137/S0036144598333613. · Zbl 0927.35130
[15] Cheng, K.-S., Isaacson, D., Newell, J. S., and Gisser, D. G., Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 36 (1989), pp. 918-924.
[16] Colton, D. and Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed., , Springer-Verlag, Berlin, 1998. · Zbl 0893.35138
[17] Dardé, J., Hakula, H., Hyvönen, N., and Staboulis, S., Fine-tuning electrode information in electrical impedance tomography, Inverse Probl. Imaging, 6 (2012), pp. 399-421. · Zbl 1253.35216
[18] Dardé, J., Hyvönen, N., Kuutela, T., and Valkonen, T., Contact adapting electrode model for electrical impedance tomography, SIAM J. Appl. Math., 82 (2022), pp. 427-449, doi:10.1137/21M1396125. · Zbl 1486.35463
[19] Dobson, D. C. and Vogel, C. R., Convergence of an iterative method for total variation denoising, SIAM J. Numer. Anal., 34 (1997), pp. 1779-1791, doi:10.1137/S003614299528701X. · Zbl 0898.65034
[20] Duong, D.-L., Helin, T., and Rojo-Garcia, J. R., Stability estimates for the expected utility in Bayesian optimal experimental design, Inverse Problems, 39 (2022), 125008.
[21] Gabriel, S., Lau, R. W., and Gabriel, C., The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol., 41 (1996), 2251.
[22] Hanke, M., Harrach, B., and Hyvönen, N., Justification of point electrode models in electrical impedance tomography, Math. Models Methods Appl. Sci., 21 (2011), pp. 1395-1413. · Zbl 1219.65126
[23] Hannukainen, A., Hyvönen, N., and Perkkiö, L., Inverse heat source problem and experimental design for determining iron loss distribution, SIAM J. Sci. Comput., 43 (2021), pp. B243-B270, doi:10.1137/20M1329986. · Zbl 1477.65178
[24] Harhanen, L., Hyvönen, N., Majander, H., and Staboulis, S., Edge-enhancing reconstruction algorithm for three-dimensional electrical impedance tomography, SIAM J. Sci. Comput., 37 (2015), pp. B60-B78, doi:10.1137/140971750. · Zbl 1325.78007
[25] Helin, T., Hyvönen, N., Maaninen, J., and Puska, J.-P., Bayesian design of measurements for magnetorelaxometry imaging, Inverse Problems, 39 (2023), 125020. · Zbl 07780896
[26] Helin, T., Hyvönen, N., and Puska, J.-P., Edge-promoting adaptive Bayesian experimental design for X-ray imaging, SIAM J. Sci. Comput., 44 (2022), pp. B506-B530, doi:10.1137/21M1409330. · Zbl 1493.62463
[27] Horesh, L., Haber, E., and Tenorio, L., Optimal experimental design for the large-scale nonlinear ill-posed problem of impedance imaging, in Large-Scale Inverse Problems and Quantification of Uncertainty, Wiley, 2011, pp. 273-290.
[28] Hyvönen, N. and Mustonen, L., Smoothened complete electrode model, SIAM J. Appl. Math., 77 (2017), pp. 2250-2271, doi:10.1137/17M1124292. · Zbl 1391.35364
[29] Hyvönen, N. and Mustonen, L., Generalized linearization techniques in electrical impedance tomography, Numer. Math., 140 (2018), pp. 95-120. · Zbl 1402.65143
[30] Hyvönen, N., Seppänen, A., and Staboulis, S., Optimizing electrode positions in electrical impedance tomography, SIAM J. Appl. Math., 74 (2014), pp. 1831-1851, doi:10.1137/140966174. · Zbl 1457.65168
[31] Kaipio, J. and Somersalo, E., Statistical and Computational Inverse Problems, , Springer-Verlag, New York, 2005. · Zbl 1068.65022
[32] Kaipio, J. P., Seppänen, A., Somersalo, E., and Haario, H., Posterior covariance related optimal current patterns in electrical impedance tomography, Inverse Problems, 20 (2004), pp. 919-936. · Zbl 1074.62079
[33] Kaipio, J. P., Seppänen, A., Voutilainen, A., and Haario, H., Optimal current patterns in dynamical electrical impedance tomography imaging, Inverse Problems, 23 (2007), pp. 1201-1214. · Zbl 1113.62150
[34] Karimi, A., Taghizadeh, L., and Heitzinger, C., Optimal Bayesian experimental design for electrical impedance tomography in medical imaging, Comput. Methods Appl. Mech. Engrg., 373 (2021), 113489. · Zbl 1506.74255
[35] Lai, Y., Van Drongelen, W., Ding, L., Hecox, K. E., Towle, V. L., Frim, D. M., and He, B., Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra-and intra-cranial electrical potential recordings, Clin. Neurophysiol., 116 (2005), pp. 456-465.
[36] Lassas, M. and Siltanen, S., Can one use total variation prior for edge-preserving Bayesian inversion?, Inverse Problems, 20 (2004), 1537. · Zbl 1062.62260
[37] Latikka, J. A., Hyttinen, J. A., Kuurne, T. A., Eskola, H. J., and Malmivuo, J. A., The conductivity of brain tissue: Comparison of results in vivo and in vitro measurement, in Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 4, Instanbul, Turkey, , IEEE, 2001, pp. 910-912.
[38] Lee, E., Duffy, W., Hadimani, R., Waris, M., Siddiqui, W., Islam, F., Rajamani, M., Nathan, R., and Jiles, D., Investigational effect of brain-scalp distance on the efficacy of transcranial magnetic stimulation treatment in depression, IEEE Trans. Magn., 52 (2016), pp. 1-4.
[39] McCann, H., Pisano, G., and Beltrachini, L., Variation in reported human head tissue electrical conductivity values, Brain Topogr., 32 (2019), pp. 825-858.
[40] Nocedal, J. and Wright, S. J., Numerical Optimization, 2nd ed., Springer, New York, 2006. · Zbl 1104.65059
[41] Oostendorp, T. F., Delbeke, J., and Stegeman, D. F., The conductivity of the human skull: Results of in vivo and in vitro measurements, IEEE Trans. Biomed. Eng., 47 (2000), pp. 1487-1492.
[42] Rainforth, T., Foster, A., Ivanova, D. R., and Smith, F. B., Modern Bayesian experimental design, Statist. Sci., 39 (2024), pp. 100-114. · Zbl 07849735
[43] Rudin, L. I., Osher, S., and Fatemi, E., Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259-268. · Zbl 0780.49028
[44] Ryan, E. G., Drovandi, C. C., McGree, J. M., and Pettitt, A. N., A review of modern computational algorithms for Bayesian optimal design, Int. Stat. Rev., 84 (2016), pp. 128-154. · Zbl 07763475
[45] Smyl, D. and Liu, D., Optimizing electrode positions in 2-D electrical impedance tomography using deep learning, IEEE Trans. Instrum. Meas., 69 (2020), pp. 6030-6044.
[46] Somersalo, E., Cheney, M., and Isaacson, D., Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), pp. 1023-1040, doi:10.1137/0152060. · Zbl 0759.35055
[47] Toivanen, J., Hänninen, A., Savolainen, T., Forss, N., and Kolehmainen, V., Monitoring hemorrhagic strokes using EIT, in Bioimpedance and Spectroscopy, Annus, P. and Min, M., eds., Academic Press, 2021, pp. 271-298.
[48] Uhlmann, G., Electrical impedance tomography and Calderón’s problem, Inverse Problems, 25 (2009), 123011. · Zbl 1181.35339
[49] Vauhkonen, M., Electrical Impedance Tomography with Prior Information, Kuopio University Publications C (Dissertation) 62, Kuopio University, 1997.
[50] Vauhkonen, P. J., Vauhkonen, M., Savolainen, T., and Kaipio, J. P., Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Trans. Biomed. Eng., 46 (1999), pp. 1150-1160.
[51] Vogel, C. R. and Oman, M. E., Iterative methods for total variation denoising, SIAM J. Sci. Comput., 17 (1996), pp. 227-238, doi:10.1137/0917016. · Zbl 0847.65083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.