×

A supervised clustering approach for fMRI-based inference of brain states. (English) Zbl 1234.92046

Summary: We propose a method that combines signals from many brain regions observed in functional magnetic resonance imaging (fMRI) to predict the subject’s behavior during a scanning session. Such predictions suffer from the huge number of brain regions sampled on the voxel grid of standard fMRI data sets: the curse of dimensionality. Dimensionality reduction is thus needed, but it is often performed using a univariate feature selection procedure, that handles neither the spatial structure of the images, nor the multivariate nature of the signal.
By introducing a hierarchical clustering of the brain volume that incorporates connectivity constraints, we reduce the span of the possible spatial configurations to a single tree of nested regions tailored to the signal. We then prune the tree in a supervised setting, hence the name supervised clustering, in order to extract a parcellation (division of the volume) such that parcel-based signal averages best predict the target information. Dimensionality reduction is thus achieved by feature agglomeration, and the constructed features now provide a multi-scale representation of the signal. Comparisons with reference methods on both simulated and real data show that our approach yields higher prediction accuracy than standard voxel-based approaches. Moreover, the method infers an explicit weighting of the regions involved in the regression or classification task.

MSC:

92C55 Biomedical imaging and signal processing
92C20 Neural biology
62H30 Classification and discrimination; cluster analysis (statistical aspects)
68T99 Artificial intelligence

Software:

LIBSVM; Scikit; glmnet; PRMLT

References:

[1] Cox, D. D.; Savoy, R. L., Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex, NeuroImage, 19, 2, 261-270 (2003)
[2] Kamitani, Y.; Tong, F., Decoding the visual and subjective contents of the human brain, Nature Neuroscience, 8, 5, 679-685 (2005)
[3] Dayan, P.; Abbott, L. F., Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (2001), The MIT Press · Zbl 1051.92010
[4] Haynes, J.-D.; Rees, G., Decoding mental states from brain activity in humans, Nature Reviews Neuroscience, 7, 523-534 (2006)
[5] Carroll, M. K.; Cecchi, G. A.; Rish, I.; Garg, R.; Rao, A. R., Prediction and interpretation of distributed neural activity with sparse models, NeuroImage, 44, 1, 112-122 (2009)
[6] Friston, K.; Holmes, A.; Worsley, K.; Poline, J.; Frith, C.; Frackowiak, R., Statistical parametric maps in functional imaging: a general linear approach, Human Brain Mapping, 2, 189-210 (1995)
[7] Cordes, D.; Haughtou, V. M.; Carew, J. D.; Arfanakis, K.; Maravilla, K., Hierarchical clustering to measure connectivity in fMRI resting-state data, Magnetic Resonance Imaging, 20, 4, 305-317 (2002)
[8] Palatucci, M.; Mitchell, T., Classification in very high dimensional problems with handfuls of examples, (Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD) (2007), Springer-Verlag)
[9] V. Michel, A. Gramfort, G. Varoquaux, B. Thirion, Total variation regularization enhances regression-based brain activity prediction, in: First ICPR Workshop on Brain Decoding—Pattern Recognition Challenges in Neuroimaging—20th International Conference on Pattern Recognition, 2010, p. 1.; V. Michel, A. Gramfort, G. Varoquaux, B. Thirion, Total variation regularization enhances regression-based brain activity prediction, in: First ICPR Workshop on Brain Decoding—Pattern Recognition Challenges in Neuroimaging—20th International Conference on Pattern Recognition, 2010, p. 1.
[10] Kriegeskorte, N.; Goebel, R.; Bandettini, P., Information-based functional brain mapping, Proceedings of the National Academy of Sciences of the United States of America, 103, 3863-3868 (2006)
[11] Flandin, G.; Kherif, F.; Pennec, X.; Malandain, G.; Ayache, N.; Poline, J.-B., Improved detection sensitivity in functional MRI data using a brain parcelling technique, (Medical Image Computing and Computer-Assisted Intervention (MICCAI’02), Lecture Notes in Computer Science, vol. 2488 (2002)), 467-474 · Zbl 1028.68741
[12] Mitchell, T. M.; Hutchinson, R.; Niculescu, R. S.; Pereira, F.; Wang, X.; Just, M.; Newman, S., Learning to decode cognitive states from brain images, Machine Learning V, 57, 1, 145-175 (2004) · Zbl 1078.68715
[13] Fan, Y.; Shen, D.; Davatzikos, C., Detecting cognitive states from fMRI images by machine learning and multivariate classification, (CVPRW ’06: Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (2006)), 89
[14] Thirion, B.; Flandin, G.; Pinel, P.; Roche, A.; Ciuciu, P.; Poline, J.-B., Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fMRI datasets, Human Brain Mapping, 27, 8, 678-693 (2006)
[15] Ugurbil, K.; Toth, L.; Kim, D.-S., How accurate is magnetic resonance imaging of brain function?, Trends in Neurosciences, 26, 2, 108-114 (2003)
[16] Kontos, D.; Megalooikonomou, V.; Pokrajac, D.; Lazarevic, A.; Obradovic, Z.; Boyko, O. B.; Ford, J.; Makedon, F.; Saykin, A. J., Extraction of discriminative functional MRI activation patterns and an application to Alzheimer’s disease, (Medical Image Computing and Computer-Assisted Intervention MICCAI 2004 (2004)), 727-735
[17] Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M., Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the MNI MRI single-subject brain, NeuroImage, 15, 1, 273-289 (2002)
[18] Keller, M.; Lavielle, M.; Perrot, M.; Roche, A., Anatomically Informed Bayesian Model Selection for fMRI Group Data Analysis, (12th Medical Image Computing and Computer-Assisted Intervention (MICCAI) (2009))
[19] Thyreau, B.; Thirion, B.; Flandin, G.; Poline, J.-B., Anatomo-functional description of the brain: a probabilistic approach, (Proceedings of the 31th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. V (2006)), 1109-1122
[20] Ghebreab, S.; Smeulders, A.; Adriaans, P., Predicting brain states from fMRI data: incremental functional principal component regression, (Advances in Neural Information Processing Systems (2008), MIT Press), 537-544
[21] He, L.; Greenshields, I. R., An mrf spatial fuzzy clustering method for fMRI SPMs, Biomedical Signal Processing and Control, 3, 4, 327-333 (2008)
[22] Filzmoser, P.; Baumgartner, R.; Moser, E., A hierarchical clustering method for analyzing functional MR images, Magnetic Resonance Imaging, 17, 6, 817-826 (1999)
[23] Tucholka, A.; Thirion, B.; Perrot, M.; Pinel, P.; Mangin, J.-F.; Poline, J.-B., Probabilistic anatomo-functional parcellation of the cortex: how many regions?, (11th Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lecture Notes in Computer Science (2008), Springer Verlag)
[24] Haynes, J.-D.; Rees, G., Predicting the orientation of invisible stimuli from activity in human primary visual cortex, Nature Neuroscience, 8, 5, 686-691 (2005)
[25] Golland, P.; Golland, Y.; Malach, R., Detection of spatial activation patterns as unsupervised segmentation of fMRI data, (Medical Image Computing and Computer-Assisted Intervention, MICCAI 2007 (2007)), 110-118
[26] V. Michel, E. Eger, C. Keribin, J.-B. Poline, B. Thirion, A supervised clustering approach for extracting predictive information from brain activation images, Mathematical Methods in Biomedical Image Analysis (MMBIA’10), 2010.; V. Michel, E. Eger, C. Keribin, J.-B. Poline, B. Thirion, A supervised clustering approach for extracting predictive information from brain activation images, Mathematical Methods in Biomedical Image Analysis (MMBIA’10), 2010.
[27] Ward, J. H., Hierarchical grouping to optimize an objective function, Journal of the American Statistical Association, 58, 301, 236-244 (1963)
[28] Johnson, S. C., Hierarchical clustering schemes, Psychometrika, 2, 241-254 (1967) · Zbl 1367.62191
[29] Cortes, C.; Vapnik, V., Support-vector networks, Machine Learning, 20, 3, 273-297 (1995) · Zbl 0831.68098
[30] Oliver, J. J.; Hand, D. J., On pruning and averaging decision trees, (International Conference on Machine Learning (ICML) (1995)), 430-437
[31] Zou, H.; Hastie, T., Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B, 67, 301 (2005) · Zbl 1069.62054
[32] Krishnapuram, B.; Carin, L.; Figueiredo, M. A.; Hartemink, A. J., Sparse multinomial logistic regression: fast algorithms and generalization bounds, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 957-968 (2005)
[33] Hughes, G., On the mean accuracy of statistical pattern recognizers, IEEE Transactions on Information Theory, 14, 1, 55-63 (1968)
[34] Friedman, J.; Hastie, T.; Tibshirani, R., Regularization paths for generalized linear models via coordinate descent, Journal of Statistical Software, 33, 1 (2009)
[35] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, Software available at: \( \langle\) http://www.csie.ntu.edu.tw/∼cjlin/libsvm \(\rangle \); C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, Software available at: \( \langle\) http://www.csie.ntu.edu.tw/∼cjlin/libsvm \(\rangle \)
[36] Scikit-learn \(\langle\) http://scikit-learn.sourceforge.net/\( \rangle \); Scikit-learn \(\langle\) http://scikit-learn.sourceforge.net/\( \rangle \)
[37] Eger, E.; Kell, C.; Kleinschmidt, A., Graded size sensitivity of object exemplar evoked activity patterns in human loc subregions, Journal of Neurophysiology, 100, 4, 2038-2047 (2007)
[38] Bishop, C. M., Pattern Recognition and Machine Learning (Information Science and Statistics) (2007), Springer
[39] Norman, K. A.; Polyn, S. M.; Detre, G. J.; Haxby, J. V., Beyond mind-reading: multi-voxel pattern analysis of fMRI data, Trends in Cognitive Sciences, 10, 9, 424-430 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.