×

Analysis of PFG anomalous diffusion via real-space and phase-space approaches. (English) Zbl 1459.78010

Summary: Pulsed-field gradient (PFG) diffusion experiments can be used to measure anomalous diffusion in many polymer or biological systems. However, it is still complicated to analyze PFG anomalous diffusion, particularly the finite gradient pulse width (FGPW) effect. In practical applications, the FGPW effect may not be neglected, such as in clinical diffusion magnetic resonance imaging (MRI). Here, two significantly different methods are proposed to analyze PFG anomalous diffusion: the effective phase-shift diffusion equation (EPSDE) method and a method based on observing the signal intensity at the origin. The EPSDE method describes the phase evolution in virtual phase space, while the method to observe the signal intensity at the origin describes the magnetization evolution in real space. However, these two approaches give the same general PFG signal attenuation including the FGPW effect, which can be numerically evaluated by a direct integration method. The direct integration method is fast and without overflow. It is a convenient numerical evaluation method for Mittag-Leffler function-type PFG signal attenuation. The methods here provide a clear view of spin evolution under a field gradient, and their results will help the analysis of PFG anomalous diffusion.

MSC:

78A55 Technical applications of optics and electromagnetic theory
78A70 Biological applications of optics and electromagnetic theory
78A60 Lasers, masers, optical bistability, nonlinear optics
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
92C55 Biomedical imaging and signal processing
26A33 Fractional derivatives and integrals
33E12 Mittag-Leffler functions and generalizations
35R11 Fractional partial differential equations
35Q60 PDEs in connection with optics and electromagnetic theory

References:

[1] Wyss, W.; The fractional diffusion equation; J. Math. Phys.: 1986; Volume 27 ,2782-2785. · Zbl 0632.35031
[2] Metzler, R.; Klafter, J.; The random walk’s guide to anomalous diffusion: A fractional dynamics approach; Phys. Rep.: 2000; Volume 339 ,1-77. · Zbl 0984.82032
[3] Sokolov, I.M.; Models of anomalous diffusion in crowded environments; Soft Matter: 2012; Volume 8 ,9043-9052.
[4] Povstenko, Y.; ; Linear Fractional Diffusion-Wave Equation for Scientists and Engineers: New York, NY, USA 2015; . · Zbl 1331.35004
[5] Köpf, M.; Corinth, C.; Haferkamp, O.; Nonnenmacher, T.F.; Anomalous diffusion of water in biological tissues; Biophys. J.: 1996; Volume 70 ,2950-2958.
[6] Saichev, A.I.; Zaslavsky, G.M.; Fractional kinetic equations: Solutions and applications; Chaos: 1997; Volume 7 ,753-764. · Zbl 0933.37029
[7] Lindsey, C.P.; Patterson, G.D.; Detailed comparison of the Williams-Watts and Cole-Davidson functions; J. Chem. Phys.: 1980; Volume 73 ,3348-3357.
[8] Kaplan, J.I.; Garroway, A.N.; Homogeneous and inhomogeneous distributions of correlation times. Lineshapes for chemical exchange; J. Magn. Reson.: 1982; Volume 49 ,464-475.
[9] Hahn, E.L.; Spin echoes; Phys. Rev.: 1950; Volume 80 ,580-594. · Zbl 0040.13801
[10] Torrey, H.C.; Bloch Equations with Diffusion Terms; Phys. Rev.: 1956; Volume 104 ,563-565.
[11] McCall, D.W.; Douglass, D.C.; Anderson, E.W.; Self-diffusion studies by means of nuclear magnetic resonance spin-echo techniques; Ber. Bunsenges. Phys. Chem.: 1963; Volume 67 ,336-340.
[12] Stejskal, E.O.; Tanner, J.E.; Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient; J. Chem. Phys.: 1965; Volume 42 ,288-292.
[13] Price, W.S.; Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Basic theory; Concepts Magn. Reson.: 1997; Volume 9 ,299-336.
[14] Price, W.S.; ; NMR Studies of Translational Motion: Principles and Applications: Cambridge, UK 2009; .
[15] Callaghan, P.; ; Translational Dynamics and Magnetic Resonance: Principles of Pulsed Gradient Spin Echo NMR: Oxford, UK 2011; .
[16] McRobbie, D.W.; Moore, E.A.; Graves, M.J.; Prince, M.R.; ; MRI from Picture to Proton: Cambridge, UK 2007; ,338.
[17] Magin, R.L.; Abdullah, O.; Baleanu, D.; Zhou, X.J.; Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation; J. Magn. Reson.: 2008; Volume 190 ,255-270.
[18] Lin, G.; An effective phase shift diffusion equation method for analysis of PFG normal and fractional diffusions; J. Magn. Reson.: 2015; Volume 259 ,232-240.
[19] Kärger, J.; Pfeifer, H.; Vojta, G.; Time correlation during anomalous diffusion in fractal systems and signal attenuation in NMR field-gradient spectroscopy; Phys. Rev. A: 1988; Volume 37 ,4514-4517.
[20] Kimmich, R.; ; NMR: Tomography, Diffusometry, Relaxometry: Heidelberg, Germany 1997; .
[21] Fatkullin, N.; Kimmich, R.; Theory of field-gradient NMR diffusometry of polymer segment displacements in the tube-reptation model; Phys. Rev. E: 1995; Volume 52 ,3273-3276.
[22] Bennett, K.M.; Schmainda, K.M.; Bennett, R.T.; Rowe, D.B.; Lu, H.; Hyde, J.S.; Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model; Magn. Reson. Med.: 2003; Volume 50 ,727-734.
[23] Bennett, K.M.; Hyde, J.S.; Schmainda, K.M.; Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients; Magn. Reson. Med.: 2006; Volume 56 ,235-239.
[24] Klafter, J.; Sokolov, I.M.; ; First Step in Random Walks. From Tools to Applications: New York, NY, USA 2011; . · Zbl 1242.60046
[25] Hanyga, A.; Seredyńska, M.; Anisotropy in high-resolution diffusion-weighted MRI and anomalous diffusion; J. Magn. Reson.: 2012; Volume 220 ,85-93.
[26] Lin, G.; Instantaneous signal attenuation method for analysis of PFG fractional diffusions; J. Magn. Reson.: 2016; Volume 269 ,36-49.
[27] Lin, G.; Analyzing signal attenuation in PFG anomalous diffusion via a non-gaussian phase distribution approximation approach by fractional derivatives; J. Chem. Phys.: 2016; Volume 145 ,194202.
[28] Lin, G.; Zheng, S.; Liao, X.; Signal attenuation of PFG restricted anomalous diffusions in plate, sphere, and cylinder; J. Magn. Reson.: 2016; Volume 272 ,25-36.
[29] Damion, R.A.; Packer, K.J.; Predictions for pulsed-field-gradient NMR experiments of diffusion in fractal spaces; Proc. Math. Phys. Eng. Sci.: 1997; Volume 453 ,205-211. · Zbl 0870.60080
[30] Lin, G.; The exact PFG signal attenuation expression based on a fractional integral modified-Bloch equation; arXiv: 2017; .
[31] Lin, G.; Fractional differential and fractional integral modified-Bloch equations for PFG anomalous diffusion and their general solutions; arXiv: 2017; .
[32] Mainardi, F.; Luchko, Y.; Pagnini, G.; The fundamental solution of the space-time-fractional diffusion equation; Fract. Calc. Appl. Anal.: 2001; Volume 4 ,153-192. · Zbl 1054.35156
[33] Gorenflo, R.; Mainardi, F.; Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk; Processes with Long-Range Correlations. Theory and Applications: Berlin, Germany 2003; ,148-166.
[34] Balescu, R.; V-Langevin equations, continuous time random walks and fractional diffusion; Chaos Solitons Fract.: 2007; Volume 34 ,62-80. · Zbl 1142.82356
[35] Mittal, R.C.; Nigam, R.; Solution of fractional integro-differential equations by Adomian decomposition method; Int. J. Appl. Math. Mech.: 2008; Volume 4 ,87-94.
[36] Adomian, G.; ; Solving Frontier Problems of Physics: The Decomposition Method: Dordrecht, The Netherlands 1994; . · Zbl 0802.65122
[37] Adomian, G.; Rach, R.; Inversion of nonlinear stochastic operators; J. Math. Anal. Appl.: 1983; Volume 91 ,39-46. · Zbl 0504.60066
[38] Adomian, G.; Rach, R.; On the solution of algebraic equations by the decomposition method; J. Math. Anal. Appl.: 1985; Volume 105 ,141-166. · Zbl 0552.60060
[39] Duan, J.-S.; Rach, R.; Baleanu, D.; Wazwaz, A.-M.; A review of the Adomian decomposition method and its applications to fractional differential equations; Commun. Fract. Calc.: 2012; Volume 3 ,73-99.
[40] Grinberg, F.; Farrher, E.; Ciobanu, L.; Geffroy, F.; Le Bihan, D.; Shah, N.J.; Non-Gaussian diffusion imaging for enhanced contrast of brain tissue affected by ischemic stroke; PLoS ONE: 2014; Volume 9 .
[41] Zax, D.; Pines, A.; Study of anisotropic diffusion of oriented molecules by multiple quantum spin echoes; J. Chem. Phys.: 1983; Volume 78 ,6333-6334.
[42] Karlicek, R.F.; Lowe, I.J.; A modified pulsed gradient technique for measuring diffusion in the presence of large background gradients; J. Magn. Reson.: 1980; Volume 37 ,75-91.
[43] Kilbas, A.A.; Saigo, M.; Solutions of integral equation of Abel-Volterra type; Differ. Integral Equ.: 1995; Volume 8 ,993-1011. · Zbl 0823.45002
[44] Lin, G.; General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations; Physica A: 2018; . · Zbl 1514.92052
[45] Germano, G.; Politi, M.; Scalas, E.; Schilling, R.L.; Stochastic calculus for uncoupled continuous-time random walks; Phys. Rev. E: 2009; Volume 79 ,066102.
[46] Cicerone, M.T.; Wagner, P.A.; Ediger, M.D.; Translational diffusion on heterogeneous lattices: A model for dynamics in glass forming materials; J. Phys. Chem. B: 1997; Volume 101 ,8727-8734.
[47] Lin, G.; Zhang, J.; Cao, H.; Jones, A.A.; A lattice model for the simulation of diffusion in heterogeneous polymer systems. Simulation of apparent diffusion constants as determined by pulse-field-gradient nuclear magnetic resonance; J. Phys. Chem. B: 2003; Volume 107 ,6179-6186.
[48] Lin, G.; Aucoin, D.; Giotto, M.; Canfield, A.; Wen, W.; Jones, A.A.; Lattice model simulation of penetrant diffusion along hexagonally packed rods in a barrier matrix as determined by pulsed-field-gradient nuclear magnetic resonance; Macromolecules: 2007; Volume 40 ,1521-1528.
[49] Gorenflo, R.; Loutchko, J.; Luchko, Y.; Computation of the Mittag-Leffler function Eα,β (z) and its derivative; Fract. Calc. Appl. Anal.: 2002; Volume 5 ,491-518. · Zbl 1027.33016
[50] Zeng, C.; Chen, Y.; Global Pade approximations of the generalized Mittag-Leffler function and its inverse; Fract. Calc. Appl. Anal.: 2015; Volume 18 ,1492-1506. · Zbl 1333.26007
[51] Chen, W.; Sun, H.; Zhang, X.; Korošak, D.; Anomalous diffusion modeling by fractal and fractional derivatives; Comput. Math. Appl.: 2010; Volume 59 ,1754-1758. · Zbl 1189.35355
[52] Le Doussal, P.; Sen, P.N.; Decay of nuclear magnetization by diffusion in a parabolic magnetic field: An exactly solvable model; Phys. Rev. B: 1992; Volume 46 ,3465-3485.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.