×

Methodology for the solutions of some reduced Fokker-Planck equations in high dimensions. (English) Zbl 1214.82076

It is developed the state space split method to solve the reduced Fokker-Plank equation in high-dimensional state space. This procedure consists in splitting into two subspaces the state space of the nonlinear stochastic dynamic system. The reduced Fokker-Plank equation is integrated in one of the subspaces and the reduced Fokker-Plank equation in another subspace is derived. This last equation is governing the approximate joint probability density function of the state variables in the subspace. This method only works for the systems that can be analyzed with the equivalent linearization method.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
35Q84 Fokker-Planck equations
Full Text: DOI

References:

[1] Kramers, Physica 7 pp 284– (1940) · Zbl 0061.46405 · doi:10.1016/S0031-8914(40)90098-2
[2] Booton, IRE Trans. Circuit Theory (USA) 1(1) pp 9– (1954) · doi:10.1109/TCT.1954.6373354
[3] Y.Y. Lin
[4] T.T. Soong
[5] Y.K. Lin G.Q. Cai
[6] C.W. Gardiner
[7] H. Risken
[8] K. Sobczyk
[9] L. Socha
[10] Swailes, Physica A 242 pp 38– (1997) · doi:10.1016/S0378-4371(97)00195-7
[11] Torres, Physica A 329 pp 68– (2003) · Zbl 1056.81009 · doi:10.1016/S0378-4371(03)00615-0
[12] Subramanian, Physica A 334 pp 343– (2004) · doi:10.1016/j.physa.2003.10.055
[13] Pankavich, Physica A 387 pp 4053– (2008) · doi:10.1016/j.physa.2008.03.008
[14] Einstein, Ann. Phys. (Berlin) 322 pp 549– (1905) · JFM 36.0975.01 · doi:10.1002/andp.19053220806
[15] Fokker, Ann. Phys. (Berlin) 348 pp 810– (1914) · doi:10.1002/andp.19143480507
[16] Planck, Ann. Phys. (Berlin) 357 pp 491– (1917) · doi:10.1002/andp.19173570505
[17] Kolmogorov, Math. Ann. 104 pp 415– (1931) · Zbl 0001.14902 · doi:10.1007/BF01457949
[18] Dimentberg, Int. J. Non-Linear Mech. 17 pp 231– (1982) · Zbl 0506.70028 · doi:10.1016/0020-7462(82)90023-3
[19] A. Scheurkogel I. Elishakoff
[20] Assaf, Int. J. Control 23 pp 477– (1976) · Zbl 0334.93038 · doi:10.1080/00207177608922174
[21] Tagliani, Probab. Eng. Mech. 4 pp 99– (1989) · doi:10.1016/0266-8920(89)90014-3
[22] Sobczyk, Physica A 193 pp 448– (1993) · Zbl 0799.60052 · doi:10.1016/0378-4371(93)90487-O
[23] R.L. Stratonovich
[24] Crandall, J. Acoust Soc. Am. 35 pp 1700– (1963) · doi:10.1121/1.1918792
[25] Barcilon, SIAM J. Appl. Math. 56 pp 446– (1996) · Zbl 0849.35139 · doi:10.1137/S003613999325511X
[26] Khasminskii, SIAM J. Appl. Math. 56 pp 1766– (1996) · Zbl 0873.35015 · doi:10.1137/S0036139994270085
[27] Harris, Int. J. Numer. Methods Eng. 14 pp 37– (1979) · Zbl 0424.60065 · doi:10.1002/nme.1620140104
[28] P.E. Kloeden E. Platen
[29] Er, Physica A 262 pp 118– (1999) · doi:10.1016/S0378-4371(98)00362-8
[30] Er, Trans. ASME, J. Appl. Mech. 67 pp 355– (2000) · Zbl 1110.74430 · doi:10.1115/1.1304842
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.