×

Visual proofs as counterexamples to the standard view of informal mathematical proofs? (English) Zbl 1524.00011

Giardino, Valeria (ed.) et al., Diagrammatic representation and inference. 13th international conference, Diagrams 2022, Rome, Italy, September 14–16, 2022. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 13462, 37-53 (2022).
Summary: A passage from Jody Azzouni’s article [“The algorithmic-device view of informal rigorous mathematical proof”, in: B. Sriraman (ed.), Handbook of the history and philosophy of mathematical practice. Cham: Springer. 1–82 (2020; doi:10.1007/978-3-030-19071-2_4-1)] in which he argues against Hamami and Avigad’s standard view of informal mathematical proof with the help of a specific visual proof of \(1/2+1/4+1/8+1/16+\dots =1\) is critically examined. By reference to mathematicians’ judgments about visual proofs in general, it is argued that Azzouni’s critique of Hamami and Avigad’s account is not valid. Nevertheless, by identifying a necessary condition for the visual proof to be considered a proper proof in the first place, and suggesting an appropriate way to establish its correctness, it is shown how Azzouni’s assessment of the epistemic process associated with the visual proof can turn out to be essentially correct. From this, it is concluded that although visual proofs do not constitute counterexamples to the standard view in the sense suggested by Azzouni, at least the visual proof mentioned above shows that this view does not cover all the ways in which mathematical truth can be justified.
For the entire collection see [Zbl 1515.68036].

MSC:

00A35 Methodology of mathematics
00A30 Philosophy of mathematics

References:

[1] Alsina, C.; Nelsen, R., Math Made Visual - Creating Images for Understanding Mathematics (2006), Washington: The Mathematical Association of America, Washington · Zbl 1132.00001 · doi:10.5948/UPO9781614441007
[2] Alsina, C.; Nelsen, R., An invitation to proofs without words, Eur. J. Pure Appl. Math., 3, 1, 118-127 (2010) · Zbl 1209.00020
[3] Avigad, J., Reliability of mathematical inference, Synthese, 198, 8, 7377-7399 (2020) · Zbl 1507.00016 · doi:10.1007/s11229-019-02524-y
[4] Azzouni, J., The derivation-indicator view of mathematical practice, Philos. Math., III, 12, 81-105 (2004) · Zbl 1136.00301 · doi:10.1093/philmat/12.2.81
[5] Azzouni, J., Why do informal proofs conform to formal norms?, Found. Sci., 14, 9-26 (2009) · Zbl 1182.03009 · doi:10.1007/s10699-008-9144-9
[6] Azzouni, J., That we see that some diagrammatic proofs are perfectly rigorous, Philosophia Mathematica (III), 21, 3, 323-338 (2013) · Zbl 1309.00053 · doi:10.1093/philmat/nkt015
[7] Azzouni, J.: The Algorithmic-Device View of Informal Rigorous Mathematical Proof. In: Sriraman, B. (ed.) Handbook of the History and Philosophy of Mathematical Practice, pp. 1-82. Springer, Cham. (2020). doi:10.1007/978-3-030-19071-2_4-1
[8] Barbeau, E.; Leah, P., Euler’s 1760 paper on divergent series, Hist. Math., 3, 2, 141-160 (1976) · Zbl 0325.01011 · doi:10.1016/0315-0860(76)90030-6
[9] Birkhoff, G., A Source Book in Classical Analysis (1973), Cambridge: Harvard University Press, Cambridge · Zbl 0275.01009
[10] Borwein, P.; Jörgenson, L., Visible structures in number theory, Am. Math. Mon., 108, 10, 897-910 (2001) · Zbl 1160.11300 · doi:10.1080/00029890.2001.11919824
[11] Bressoud, D., A Radical Approach to Real Analysis (2007), Washington: The Mathematical Association of America, Washington · Zbl 1121.26001 · doi:10.1090/text/010
[12] Brown, J., Philosophy of Mathematics - An Introduction to the World of Proofs and Pictures (1999), London: Routledge, London · Zbl 1028.00005
[13] Burgess, J., Rigor and Structure (2015), Oxford: Oxford University Press, Oxford · Zbl 1311.00012 · doi:10.1093/acprof:oso/9780198722229.001.0001
[14] Burton, D., The History of Mathematics - An Introduction (2011), New York: McGraw-Hill, New York
[15] Carter, J., Diagrams and proofs in analysis, Int. Stud. Philos. Sci., 24, 1, 1-14 (2010) · Zbl 1206.00017 · doi:10.1080/02698590903467085
[16] De Toffoli, S., ‘Chasing’ the diagram the use of visualizations in algebraic reasoning, Rev. Symbol. Logic, 10, 1, 158-186 (2017) · Zbl 1417.00070 · doi:10.1017/S1755020316000277
[17] De Toffoli, S., Reconciling rigor and intuition, Erkenntnis, 86, 1783-1802 (2021) · doi:10.1007/s10670-020-00280-x
[18] De Toffoli, S., What are mathematical diagrams?, Synthese, 200, 86, 1-29 (2022)
[19] De Toffoli, S., Giardino, V.: An inquiry into the practice of proving in low-dimensional topology. In: Lolli, G., Panza, M., Venturi, G. (eds.) From Logic to Practice, pp. 315-336. Springer (2015). doi:10.1007/978-3-319-10434-8_15 · Zbl 1429.00008
[20] Hamami, Y., Mathematical rigor and proof, Rev. Symbol. Logic, 15, 2, 409-449 (2022) · Zbl 1537.00009 · doi:10.1017/S1755020319000443
[21] Nelsen, R., Proofs without Words - Exercises in Visual Thinking (1993), Washington: The Mathematical Association of America, Washington · Zbl 1160.00303
[22] Nelsen, R., Proofs without Words II - More Exercises in Visual Thinking (2000), Washington: The Mathematical Association of America, Washington · Zbl 1099.00003
[23] Nelsen, R., Visual gems of number theory, Math Horizons, 15, 3, 7-31 (2008) · doi:10.1080/10724117.2008.11974751
[24] Paul R. Halmos - Lester R. Ford Awards, https://www.maa.org/programs-and-communities/member-communities/maa-awards/writing-awards/paul-halmos-lester-ford-awards. Accessed June 2022
[25] Tanswell, F., A problem with the dependence of informal proofs on formal proofs, Philosophia Mathematica (III), 23, 3, 295-310 (2015) · Zbl 1357.00027 · doi:10.1093/philmat/nkv008
[26] Weber, K.; Czocher, J., On mathematicians’ disagreements on what constitutes a proof, Res. Math. Educ., 21, 3, 251-270 (2019) · doi:10.1080/14794802.2019.1585936
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.