×

A note on global properties for a stage structured predator-prey model with mutual interference. (English) Zbl 1448.92196

Summary: The global stability for a stage structured predator-prey model with mutual interference is investigated. By using the method of Lyapunov functionals, it is shown that the system has a unique interior equilibrium, which is always globally asymptotically stable without any additional assumptions. The results indicate that mutual interference helps the endangered predators survive under any maturation time delay of preys. This answers two open problems presented in [Z. Li et al., Discrete Contin. Dyn. Syst., Ser. B 19, No. 1, 173–187 (2014; Zbl 1287.34071)].

MSC:

92D25 Population dynamics (general)
37N25 Dynamical systems in biology
34K60 Qualitative investigation and simulation of models involving functional-differential equations
34K20 Stability theory of functional-differential equations

Citations:

Zbl 1287.34071

References:

[1] Aiello, W.G., Freedman, H.I.: A time-delay model of single-species growth with stage structure. Math. Biosci. 101, 139-153 (1990) · Zbl 0719.92017 · doi:10.1016/0025-5564(90)90019-U
[2] Barclay, H.J., Van den Driessche, P.: A model for a species with two life history stages and added mortality. Ecol. Model. 11, 157-166 (1980) · doi:10.1016/0304-3800(80)90081-2
[3] Burnett, T.: Effects of natural temperatures on oviposition of various numbers of an insect parasite (Hymenoptera, Chalcididae, Tenthredinidae). Ann. Entomol. Soc. Am. 49, 55-59 (1956) · doi:10.1093/aesa/49.1.55
[4] Freedman, H.I.: Graphical stability, enrichment, and pest control by a natural enemy. Math. Biosci. 31, 207-225 (1976) · Zbl 0373.92023 · doi:10.1016/0025-5564(76)90080-8
[5] Freedman, H.I.: Stability analysis of a predator-prey system with mutual interference and density-dependent death rates. Bull. Math. Biol. 41, 67-78 (1979) · Zbl 0387.92016 · doi:10.1007/BF02547925
[6] Freedman, H.I., Rao, V.S.: The trade-off between mutual interference and time lags in predator-prey systems. Bull. Math. Biol. 45, 991-1004 (1983) · Zbl 0535.92024 · doi:10.1007/BF02458826
[7] Hale, J., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations, vol. 9. Applied Mathematical Science, New York (1993) · Zbl 0787.34002 · doi:10.1007/978-1-4612-4342-7
[8] Hassell, M.P.: Mutual interference between searching insect parasites. J. Anim. Ecol. 40, 473-486 (1971) · doi:10.2307/3256
[9] Hassell, M.P., Varley, G.C.: New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133-1137 (1969) · doi:10.1038/2231133a0
[10] Huang, G., Liu, A., Foryś, U.: Global stability analysis of some nonlinear delay differential equations in population dynamics. J. Nonlinear Sci. 26, 27-41 (2016) · Zbl 1332.92055 · doi:10.1007/s00332-015-9267-4
[11] Huang, G., Takeuchi, Y., Miyazaki, R.: Stability conditions for a class of delay differential equations in single species dynamics. Discrete Contin. Dyn. Syst., Ser. B 17, 2451-2464 (2012) · Zbl 1252.92048 · doi:10.3934/dcdsb.2012.17.2451
[12] Jiang, X., She, Z., Feng, Z., Zheng, X.: Bifurcation analysis of a predator-prey system with ratio-dependent functional response. Int. J. Bifurc. Chaos 27, Article ID 1750222 (2017) · Zbl 1383.34071 · doi:10.1142/S0218127417502224
[13] Korobeinikov, A., Maini, P.K.: A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Math. Biosci. Eng. 1, 57-60 (2004) · Zbl 1062.92061 · doi:10.3934/mbe.2004.1.57
[14] Korobeinikov, A., Wake, G.C.: Lyapunov functions and global stability for SIR, SIRS and SIS epidemiological models. Appl. Math. Lett. 15, 955-961 (2002) · Zbl 1022.34044 · doi:10.1016/S0893-9659(02)00069-1
[15] Li, H., She, Z.: Uniqueness of periodic solutions of a nonautonomous density-dependent predator-prey system. J. Math. Anal. Appl. 422, 886-905 (2015) · Zbl 1309.34081 · doi:10.1016/j.jmaa.2014.09.008
[16] Li, Z., Han, M., Chen, F.: Global stability of a predator-prey system with stage structure and mutual interference. Discrete Contin. Dyn. Syst., Ser. B 19, 173-187 (2014) · Zbl 1287.34071 · doi:10.3934/dcdsb.2014.19.173
[17] McCluskey, C.C.: Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Math. Biosci. Eng. 6, 603-610 (2009) · Zbl 1190.34108 · doi:10.3934/mbe.2009.6.603
[18] McCluskey, C.C.: Complete global stability for an SIR epidemic model with delay—distributed or discrete. Nonlinear Anal., Real World Appl. 11, 55-59 (2010) · Zbl 1185.37209 · doi:10.1016/j.nonrwa.2008.10.014
[19] She, Z., Li, H.: Dynamics of a density-dependent stage-structured predator-prey system with Beddington-Deangelis functional response. J. Math. Anal. Appl. 406, 188-202 (2013) · Zbl 1306.92050 · doi:10.1016/j.jmaa.2013.04.053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.