×

Dynamics of a new delayed stage-structured predator-prey model with impulsive diffusion and releasing. (English) Zbl 1418.92101

Summary: In this work, we propose a new delayed stage-structured predator-prey model with impulsive diffusion and releasing. By the stroboscopic map of the discrete dynamical system, we obtain a prey-extinction boundary periodic solution. Furthermore, we prove that the prey-extinction boundary periodic solution is globally attractive. We also prove that the investigated system is permanent by the theory on the delay and impulsive differential equations. Our results indicate that time delay, impulsive diffusion, and impulsive releasing have influence to the dynamical behaviors of the investigated system. The results of this paper also provide a tactical basis for pest management.

MSC:

92D25 Population dynamics (general)
34A37 Ordinary differential equations with impulses
37N25 Dynamical systems in biology

References:

[1] Chen, LS, Chen, J: Nonlinear Biological Dynamic Systems. Science, Beijing (1993) (in Chinese)
[2] Chen, LS: Mathematical Models and Methods in Ecology. Science, Beijing (1988) (in Chinese)
[3] Hofbauer, J, Sigmund, K: Evolutionary Games and Population Dynamics. Cambridge University, Cambridge (1998) · Zbl 0914.90287 · doi:10.1017/CBO9781139173179
[4] Freedman, HI: Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York (1980) · Zbl 0448.92023
[5] Murray, JD: Mathematical Biology, 2nd, corrected edn. Springer, Heidelberg (1993) · Zbl 0779.92001 · doi:10.1007/b98869
[6] Takeuchi, Y: Global Dynamical Properties of Lotka-Volterra Systems. World Scientific, Singapore (1996) · Zbl 0844.34006 · doi:10.1142/2942
[7] May, RM: Stability and Complexity in Model Ecosystems, 2nd edn. Princeton University, Princeton, NJ (1975)
[8] May, RM: Theoretical Ecology, Principles and Applications, 2nd edn. Blackwell, Oxford (1981)
[9] Takeuchi, Y, Oshime, Y, Matsuda, H: Persistence and periodic orbits of a three-competitor model with refuges. Math. Biosci. 108(1), 105-125 (1992) · Zbl 0748.92017 · doi:10.1016/0025-5564(92)90007-J
[10] Matsuda H, Namba T: Co-evolutionarily stable community structure in a patchy environment. J. Theor. Biol. 136(2), 229-243 (1989) · doi:10.1016/S0022-5193(89)80228-0
[11] Aiello, WG, Freedman, HI, Wu, J: Analysis of a model representing stage-structured population growth with stage-dependent time delay. SIAM J. Appl. Math. 52, 855-869 (1992) · Zbl 0760.92018 · doi:10.1137/0152048
[12] Aiello, WG, Freedman, HI: A time delay model of single-species growth with stage structure. Math. Biosci. 101, 139-153 (1990) · Zbl 0719.92017 · doi:10.1016/0025-5564(90)90019-U
[13] Agarwal, M, Tandon, A: Modeling of the urban heat island in the form of mesoscale wind and of its effect on air pollution dispersal. Appl. Math. Model. 34, 2520-2530 (2010) · Zbl 1195.86005 · doi:10.1016/j.apm.2009.11.016
[14] Jiao, J, et al.: Dynamics of a stage-structured predator-prey model with prey impulsively diffusing between two patches. Nonlinear Anal., Real World Appl. 11, 2748-2756 (2010) · Zbl 1204.34108 · doi:10.1016/j.nonrwa.2009.09.022
[15] Beretta, E, Takeuchi, Y: Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delays. SIAM J. Appl. Math. 48, 627-651 (1998) · Zbl 0661.92018 · doi:10.1137/0148035
[16] Hui, J, Chen, LS: A single species model with impulsive diffusion. Acta Math. Appl. Sin. 21(1) 43-48 (2005) · Zbl 1180.92072 · doi:10.1007/s10255-005-0213-3
[17] Wang, L, Chen, L, et al.: Impulsive diffusion in single species model. Chaos Solitons Fractals 33, 1213-1219 (2007) · Zbl 1131.92071 · doi:10.1016/j.chaos.2006.01.102
[18] Wang, H: Dispersal permanence of periodic predator-prey model with Ivlev-type functional response and impulsive effects. Appl. Math. Model. 34, 3713-3725 (2010) · Zbl 1201.34077 · doi:10.1016/j.apm.2010.02.009
[19] Kouchea, M, Tata, N: Existence and global attractivity of a periodic solution to a nonautonomous dispersal system with delays. Appl. Math. Model. 31, 780-793 (2007) · Zbl 1182.37021 · doi:10.1016/j.apm.2005.12.010
[20] Jiao, J, et al.: Impulsive vaccination and dispersal on dynamics of an SIR epidemic model with restricting infected individuals boarding transports. Physica A 449, 145-159 (2016) · Zbl 1400.92504 · doi:10.1016/j.physa.2015.10.055
[21] Levin, SA: Dispersion and population interaction. Am. Nat. 108, 207-228 (1994) · doi:10.1086/282900
[22] Cui, JA, Chen, LS: Permanence and extinction in logistic and Lotka-Volterra system with diffusion. J. Math. Anal. Appl. 258(2), 512-535 (2001) · Zbl 0985.34061 · doi:10.1006/jmaa.2000.7385
[23] Freedman, HI, Takeuchi, Y: Global stability and predator dynamics in a model of prey dispersal in a patchy environment. Nonlinear Anal. 13, 993-1002 (1989) · Zbl 0685.92018 · doi:10.1016/0362-546X(89)90026-6
[24] Jiao, J: The effect of impulsive diffusion on dynamics of a stage-structured predator-prey system. Discrete Dyn. Nat. Soc. 2010, 1-17 (2010) · Zbl 1201.92060 · doi:10.1155/2010/716932
[25] Lakshmikantham, V: Theory of Impulsive Differential Equations. World scientific, Singapor (1989) · Zbl 0718.34011 · doi:10.1142/0906
[26] Bainov D, Simeonov P: Impulsive Differential Equations: Periodic Solution and Applications. Longman, London (1993) · Zbl 0815.34001
[27] Jiao, J, et al.: An appropriate pest management SI model with biological and chemical control concern. Appl. Math. Comput. 196, 285-293 (2008) · Zbl 1130.92046
[28] Jiao, J, et al.: A delayed stage-structured predator-prey model with impulsive stocking on prey and continuous harvesting on predator. Appl. Math. Comput. 195, 316-325 (2008) · Zbl 1126.92052
[29] Jiao, J, et al.: Analysis of a stage-structured predator-prey system with birth pulse and impulsive harvesting at different moments. Nonlinear Anal., Real World Appl. 12, 2232-2244 (2011) · Zbl 1220.34067 · doi:10.1016/j.nonrwa.2011.01.005
[30] Jury, EL: Inners and Stability of Dynamics System. Wiley, New York (1974) · Zbl 0307.93025
[31] Gao, S, Chen, L, Nieto, JJ, Torres, A: Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24, 6037-6045 (2006) · doi:10.1016/j.vaccine.2006.05.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.