×

A triangle-based unstructured finite volume method for chemically reactive hypersonic flows. (English) Zbl 0985.76058

Summary: We develop a triangle-based unstructured finite volume method for chemically reactive hypersonic calculations. The method is based on a Steger-Warming flux-vector splitting approach generalized to mixtures of thermally perfect gases. Second-order-in-space and time accuracy is provided by limited flux blending and an implicit multi-stage time marching scheme. The final stiff nonlinear problem resulting from discretization presents a very peculiar block diagonal structure. This allows a decoupling of the species and gas dynamic equations in smaller subproblems. A linear algebra argument based on \(M\)-matrix theory makes it possible also to show that the method guarantees positivity of species mass densities and vibrational energies under a reasonable \(CFL\)-like constraint. Finally, a set of two-dimensional numerical test cases illustrates the performance of the method.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76K05 Hypersonic flows
76V05 Reaction effects in flows
80A32 Chemically reacting flows

References:

[1] Abgrall, R.; Fezoui, L.; Talandier, J., An extension of Osher’s Riemann solver for chemical and vibrational non-equilibrium gas flow, Int. J. Num. Methods Fluids, 14, 935 (1992) · Zbl 0753.76110
[2] Argyris, J.; Doltsinis, I. St.; Friz, H.; Urban, J., An exploration of chemically reacting viscous hypersonic flow, Comput. Methods Appl. Mech. Eng., 89, 85 (1991)
[3] Berman, A.; Plemmons, R. J., Nonnegative Matrices in the Mathematical Sciences (1994) · Zbl 0815.15016
[4] Bertolazzi, E., Positive and conservative schemes for mass action kinetics, Comput. Math. Appl., 32, 29 (1996) · Zbl 0859.92030
[5] Bertolazzi, E., A finite volume scheme for two dimensional chemically reactive hypersonic flows, Int. J. Num. Meth. Heat Fluid Flow, 8, 888 (1998) · Zbl 0948.76045
[6] Bertolazzi, E.; Manzini, G., Template Classes for PDE Solvers on 2-D Unstructured Meshes (1998) · Zbl 0980.65143
[7] Candler, G., The Computation of Weakly Ionized Hypersonic Flows in Thermo-chemical Nonequilibrium (1988)
[8] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1980) · Zbl 0511.65078
[9] Collatz, L., The Numerical Treatment of Differential Equations (1960) · Zbl 0086.32601
[10] D’Angelo, Y.; Larrouturou, B., Comparison and analysis of some numerical schemes for stiff complex chemistry problems, Math. Modell. Num. Anal., 29, 259 (1995) · Zbl 0829.76062
[11] Deschambault, R. L.; Glass, I. I., An update on non-stationary oblique shock-wave reflections: Actual isopicnics and numerical experiments, J. Fluid Mech., 131, 27 (1983)
[12] Desideri, J. A.; Glowinsky, R.; Périaux, J., Hypersonic Flows for Reentry Problems (1991)
[13] Fedkiw, R. P.; Merriman, B.; Osher, S., High accuracy numerical methods for thermally perfect gas flows with chemistry, J. Computat. Phys., 132, 175 (1997) · Zbl 0888.76053
[14] Glaister, P., An approximate linearised Riemann solver for the Euler equations for real gases, J. Computat. Phys., 77, 361 (1988) · Zbl 0644.76088
[15] Glaz, H. M.; Colella, P.; Glass, I. I.; Deschambault, R. L., A numerical study of oblique shock-wave reflections with experimental comparisons, Proc. R. Soc. Lond., 398, 117 (1985)
[16] Godlewski, E.; Raviart, P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws (1996) · Zbl 1063.65080
[17] Griffiths, D. F.; Stuart, A. M.; Yee, H. C., Numerical wave propagation in an advection equation with a non-linear source term, SIAM J. Num. Anal., 29, 1244 (1992) · Zbl 0759.65060
[18] Grossman, B.; Cinnella, P., The computation of non-equilibrium, chemically-reacting flows, Comput. Struct., 30, 79 (1988) · Zbl 0668.76138
[19] Grossman, B.; Cinnella, P., Flux split algorithms for flows with non-equilibrium chemistry and vibrational relaxation, J. Computat. Phys., 88, 131 (1990) · Zbl 0703.76047
[20] Grossman, B.; Walters, R. W., An analysis of flux-split algorithms for Euler’s equations with real gases, 8th Computational Fluid Dynamic Conference, 177 (1987)
[21] Groth, C. P.T.; Gottlieb, J. J., TVD finite-difference methods for computing high-speed thermal and chemical non-equilibrium flows with strong shocks, Int. J. Num. Meth. Heat Fluid Flow, 3, 483 (1993)
[22] Halmos, P. R., Finite-Dimensional Vector Spaces (1958) · Zbl 0107.01404
[23] Hirsch, C., Numerical Computation of Internal and External Flows (1990) · Zbl 0742.76001
[24] Hornung, H. G., Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders, J. Fluid Mech., 53, 149 (1972) · Zbl 0235.76035
[25] Hussaini, M. Y.; van Leer, B.; Rosendale, J. Van, Upwind and High-Resolution Schemes (1997) · Zbl 0877.76002
[26] Anderson, J., Hypersonic and High Temperature Gas Dynamics (1990)
[27] Larrouturou, B., How to preserve mass fraction positivity when computing compressible multi-component flows, J. Computat. Phys., 95, 59 (1991) · Zbl 0725.76090
[28] Lax, P. D., Weak soultions of nonlinear hyperbolic equations and their numerical computations, Comm. Pure Appl. Math., 7, 159 (1954) · Zbl 0055.19404
[29] LeVeque, R. J.; Yee, H. C., A study of the numerical methods for hyperbolic conservation laws with stiff source terms, J. computat. Phys., 86, 187 (1990) · Zbl 0682.76053
[30] Lindstrom, D., Effects of Numerical Dissipation on the Speed of Combustion Waves (1996)
[31] Liou, M. S.; Leer, B. Van; Shuen, J. S., Splitting of inviscid fluxes for real gases, J. Computat. Phys., 87, 1 (1990) · Zbl 0687.76074
[32] Liu, Y.; Vinokur, M., Nonequilibrium flow computations. I. An analysis of numerical formulations of conservation laws, J. Computat. Phys., 83, 373 (1989) · Zbl 0672.76080
[33] Meintjes, K.; Morgan, A. P., Performance of algorithms for calculating the equilibrium composition of a mixture of gases, J. Computat. Phys., 60, 219 (1985) · Zbl 0585.65042
[34] Millikan, R. C.; White, D. R., Systematics of vibrational relaxation, J. Chem. Phys., 39, 3209 (1963)
[35] Oran, E. S.; Boris, J. P., Numerical Simulation of Reactive Flow (1987) · Zbl 0762.76098
[36] Park, C., Problems of Rate Chemistry in the Flight Regimes of Aeroassisted Orbital Transfer Vehicles, 19th Thermophysics Conference, 1 (June 1984)
[37] Quirk, J. J., A contribution to the great Riemann solver debate, Int. J. Num. Meth. Fluids, 18, 555 (1994) · Zbl 0794.76061
[38] Shuen, J. S.; Liou, M. S.; van Leer, B., Inviscid flux-splitting algorithms for real gases with non-equillibrium chemistry, J. Computat. Phys., 90, 371 (1990) · Zbl 0701.76076
[39] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. computat. Phys., 27, 1 (1978) · Zbl 0387.76063
[40] Steger, J. L.; Warming, R. F., Flux-vector splitting of the inviscid gas dynamic equations with application to finite-difference methods, J. Computat. Phys., 40, 263 (1981) · Zbl 0468.76066
[41] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Num. Anal., 21, 995 (1984) · Zbl 0565.65048
[42] van der Vorst, H. A., Bi-CGSTAB: A fast and smoothly converging variant for Bi-CG for the solution of nonsymmetric linear systems, SIAM. J. Sci. Stat. Comput., 13, 631 (1992) · Zbl 0761.65023
[43] Vinokur, M.; Montagné, J.-L., Generalized flux-vector splitting and Roe average for an equilibrium real gas, J. Computat. Phys., 89, 276 (1990) · Zbl 0701.76072
[44] Yee, H. C., Construction of explicit and implicit symmetric TVD schemes and their applications, J. Computat. Phys., 68, 151 (1987) · Zbl 0621.76026
[45] Yee, H. C.; Klopfer, G. H.; Montagné, J.-L., High-resolution shock capturing schemes for inviscid and viscous hypersonic flows, J. Computat. Phys., 88, 31 (1990) · Zbl 0697.76079
[46] Yee, H. C.; Warming, R. F.; Harten, A., Implicit total variation diminishing (TVD) schemes for steady-state calculations, J. computat. Phys., 57, 327 (1985) · Zbl 0631.76087
[47] Yu, S. T.; McBridge, B. J.; Hsiesh, K. C.; Shuen, J. S., Numerical Simulation of Hypersonic Inlet Flows with Equilibrium or Finite Rate Chemistry, 26th Aerospace Sciences Meeting (January 1998)
[48] Zeidler, E., Nonlinear Functional Analysis and Its Applications (1986) · Zbl 0583.47050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.