×

A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions. (English) Zbl 1515.65264

Summary: With the advantages of fast calculating speed and high precision, the physics-informed neural network method opens up a new approach for numerically solving nonlinear partial differential equations. Based on conserved quantities, we devise a two-stage PINN method which is tailored to the nature of equations by introducing features of physical systems into neural networks. Its remarkable advantage lies in that it can impose physical constraints from a global perspective. In stage one, the original PINN is applied. In stage two, we additionally introduce the measurement of conserved quantities into mean squared error loss to train neural networks. This two-stage PINN method is utilized to simulate abundant localized wave solutions of integrable equations. We mainly study the Sawada-Kotera equation as well as the coupled equations: the classical Boussinesq-Burgers equations and acquire the data-driven soliton molecule, M-shape double-peak soliton, plateau soliton, interaction solution, etc. Numerical results illustrate that abundant dynamic behaviors of these solutions can be well reproduced and the two-stage PINN method can remarkably improve prediction accuracy and enhance the ability of generalization compared to the original PINN method.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
68T07 Artificial neural networks and deep learning

References:

[1] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175
[2] Jin, X. W.; Cai, S. Z.; Li, H.; Karniadakis, G. E., NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations, J. Comput. Phys., 426, Article 109951 pp. (2021) · Zbl 07510065
[3] Kharazmi, E.; Zhang, Z. Q.; Karniadakis, G. E., VPINNs: variational physics-informed neural networks for solving partial differential equations (2019), arXiv preprint
[4] Pang, G. F.; Lu, L.; Karniadakis, G. E., fPINNs: fractional physics-informed neural networks, SIAM J. Sci. Comput., 41, 4, A2603-A2626 (2019) · Zbl 1420.35459
[5] Yang, L.; Meng, X. H.; Karniadakis, G. E., B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data, J. Comput. Phys., 425, Article 109913 pp. (2021) · Zbl 07508507
[6] Kharazmi, E.; Zhang, Z. Q.; Karniadakis, G. E., hp-VPINNs: Variational physics-informed neural networks with domain decomposition, Comput. Methods Appl. Mech. Eng., 374, Article 113547 pp. (2021) · Zbl 1506.68105
[7] Raissi, M., Deep hidden physics models: deep learning of nonlinear partial differential equations, J. Mach. Learn. Res., 19, 1, 932-955 (2018) · Zbl 1439.68021
[8] Yang, Y. B.; Perdikaris, P., Adversarial uncertainty quantification in physics-informed neural networks, J. Comput. Phys., 394, 136-152 (2019) · Zbl 1452.68171
[9] Mao, Z. P.; Jagtag, A. D.; Karniadakis, G. E., Physics-informed neural networks for high-speed flows, Comput. Methods Appl. Mech. Eng., 360, Article 112789 pp. (2020) · Zbl 1442.76092
[10] Raissi, M.; Karniadakis, G. E., Hidden physics models: machine learning of nonlinear partial differential equations, J. Comput. Phys., 357, 125-141 (2018) · Zbl 1381.68248
[11] Jagtag, A. D.; Kawaguchi, K.; Karniadakis, G. E., Adaptive activation functions accelerate convergence in deep and physics-informed neural networks, J. Comput. Phys., 404, Article 109136 pp. (2020) · Zbl 1453.68165
[12] Raissi, M.; Yazdani, A.; Karniadakis, G. E., Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations, Science, 367, 6481, 1026-1030 (2020) · Zbl 1478.76057
[13] Shin, Y.; Darbon, J.; Karniadakis, G. E., On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs (2020), arXiv preprint · Zbl 1473.65349
[14] Zheng, Q.; Zeng, L.; Karniadakis, G. E., Physics-informed semantic inpainting: application to geostatistical modeling, J. Comput. Phys., 419, Article 109676 pp. (2020) · Zbl 07507237
[15] Jagtap, A. D.; Kharazmi, E.; Karniadakis, G. E., Locally adaptive activation functions with slope recovery for deep and physics-informed neural networks, Proc. R. Soc. A, 476, 2239, Article 20200334 pp. (2020) · Zbl 1472.68175
[16] Wang, L.; Yan, Z. Y., Data-driven rogue waves and parameter discovery in the defocusing nonlinear Schrödinger equation with a potential using the PINN deep learning, Phys. Lett. A, 404, Article 127408 pp. (2021) · Zbl 07409914
[17] Li, J.; Chen, Y., Solving second-order nonlinear evolution partial differential equations using deep learning, Commun. Theor. Phys., 72, 10, Article 105005 pp. (2020) · Zbl 1520.68171
[18] Li, J.; Chen, Y., A deep learning method for solving third-order nonlinear evolution equations, Commun. Theor. Phys., 72, 11, Article 115003 pp. (2020) · Zbl 1520.68170
[19] Pu, J. C.; Li, J.; Chen, Y., Soliton, breather and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints, Chin. Phys. B, 30, Article 060202 pp. (2021)
[20] Pu, J. C.; Li, J.; Chen, Y., Solving localized wave solutions of the derivative nonlinear Schrödinger equation using an improved PINN method (2021), arXiv preprint
[21] Peng, W. Q.; Pu, J. C.; Chen, Y., PINN deep learning for the Chen-Lee-Liu equation: rogue wave on the periodic background (2021), arXiv preprint
[22] Wang, X.; Cao, J. L.; Chen, Y., Higher-order rogue wave solutions of the three-wave resonant interaction equation via the generalized Darboux transformation, Phys. Scr., 90, 10, Article 105201 pp. (2015)
[23] Wang, X.; Li, Y. Q.; Fei, H.; Chen, Y., Rogue wave solutions of AB system, Commun. Nonlinear Sci. Numer. Simul., 20, 2, 434-442 (2015) · Zbl 1306.37085
[24] Xu, T.; Chen, Y., Darboux transformation of the coupled nonisospectral Gross-Pitaevskii system and its multi-component generalization, Commun. Nonlinear Sci. Numer. Simul., 57, 276-289 (2017) · Zbl 1460.76125
[25] Xu, T.; Chen, Y.; Lin, J., Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics, Chin. Phys. B, 26, 12, Article 120201 pp. (2017)
[26] Xu, T.; Chen, Y., Localized waves in three-component coupled nonlinear Schrödinger equation, Chin. Phys. B, 25, 9, Article 090201 pp. (2016)
[27] Wahlquist, H. D.; Estabrook, F. B., Bäcklund transformation for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett., 31, 23, 1386 (1973)
[28] Hirota, R.; Satsuma, J., Nonlinear evolution equations generated from the Bäcklund transformation for the Boussinesq equation, Prog. Theor. Phys., 57, 3, 797-807 (1977) · Zbl 1098.81547
[29] Nakamura, A., Bäcklund transform and conservation laws of the Benjamin-Ono equation, J. Phys. Soc. Jpn., 47, 4, 1335-1340 (1979) · Zbl 1334.35178
[30] Lu, B., Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations, Phys. Lett. A, 376, 28-29, 2045-2048 (2012) · Zbl 1266.35139
[31] Chen, S. J.; Ma, W. X.; Lü, X., Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation, Commun. Nonlinear Sci. Numer. Simul., 83, Article 105135 pp. (2020) · Zbl 1456.35178
[32] Zhang, X. E.; Chen, Y., Deformation rogue wave to the (2+1)-dimensional KdV equation, Nonlinear Dyn., 90, 2, 755-763 (2017)
[33] Zhang, X. E.; Chen, Y.; Tang, X. Y., Rogue wave and a pair of resonance stripe solitons to KP equation, Comput. Math. Appl., 76, 8, 1938-1949 (2018) · Zbl 1442.35408
[34] Zhang, X. E.; Chen, Y., Inverse scattering transformation for generalized nonlinear Schrödinger equation, Appl. Math. Lett., 98, 306-313 (2019) · Zbl 1428.35547
[35] Ablowitz, M. J.; Musslimani, Z. H., Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity, 29, 3, 915 (2016) · Zbl 1338.37099
[36] Yu, F. J.; Li, L., Inverse scattering transformation and soliton stability for a nonlinear Gross-Pitaevskii equation with external potentials, Appl. Math. Lett., 91, 41-47 (2019) · Zbl 1406.35488
[37] Zhao, Y.; Fan, E. G., Inverse scattering transformation for the Fokas-Lenells equation with nonzero boundary conditions, J. Nonlinear Math. Phys., 28, 1, 38-52 (2021) · Zbl 1497.35416
[38] Kupershmidt, B. A., Mathematics of dispersive water waves, Commun. Math. Phys., 99, 1, 51-73 (1985) · Zbl 1093.37511
[39] Agafontsev, D. S.; Zakharov, V. E., Integrable turbulence generated from modulational instability of cnoidal waves, Nonlinearity, 29, 11, 3551 (2016) · Zbl 1406.35342
[40] Agafontsev, D. S.; Zakharov, V. E., Growing of integrable turbulence, Low Temp. Phys., 46, 8, 786-791 (2020)
[41] Kaup, D. J., A higher-order water-wave equation and the method for solving it, Prog. Theor. Phys., 54, 2, 396-408 (1975) · Zbl 1079.37514
[42] Date, E., On quasi-periodic solutions of the field equation of the classical massive Thirring model, Prog. Theor. Phys., 59, 1, 265-273 (1978)
[43] Ito, M., Symmetries and conservation laws of the classical Boussinesq equation, Phys. Lett. A, 104, 5, 248-250 (1984)
[44] Kawamoto, S., Exact explode-decay mode solitary wave solution of the classical Boussinesq equation, J. Phys. Soc. Jpn., 53, 2, 469-471 (1984)
[45] Gu, Z. Q., Classical Liouville completely integrable systems associated with the solutions of Boussinesq-Burgers’ hierarchy, J. Math. Phys., 31, 6, 1374-1380 (1990) · Zbl 0714.58023
[46] Geng, X.; Wu, Y., Finite-band solutions of the classical Boussinesq-Burgers equations, J. Math. Phys., 40, 6, 2971-2982 (1999) · Zbl 0944.35085
[47] Glorot, X.; Bengio, Y., Understanding the difficulty of training deep feedforward neural networks, J. Mach. Learn. Res., 9, 249-256 (2010)
[48] He, K. M.; Zhang, X. Y.; Ren, S. Q.; Sun, J., Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, (Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)), 1026-1034
[49] Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A.; Siskind, J. M., Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res., 18, 1-43 (2018) · Zbl 06982909
[50] Liu, D. C.; Nocedal, J., On the limited memory BFGS method for large scale optimization, Math. Program., 45, 1, 503-528 (1989) · Zbl 0696.90048
[51] Li, Y. S., Soliton and Integrable System (1999), Shanghai Scientific and Technological Education Publishing House: Shanghai Scientific and Technological Education Publishing House Shanghai, (in Chinese)
[52] Göktaş, Ü.; Hereman, W., Symbolic computation of conserved densities for systems of nonlinear evolution equations, J. Symb. Comput., 24, 5, 591-622 (1997) · Zbl 0891.65129
[53] Wang, P.; Tian, B.; Liu, W. J.; Jiang, Y., Lax pair, Bäcklund transformation and multi-soliton solutions for the Boussinesq-Burgers equations from shallow water waves, Appl. Math. Comput., 218, 5, 1726-1734 (2011) · Zbl 1433.35302
[54] Xu, R., Darboux transformations and soliton solutions for classical Boussinesq-Burgers equation, Commun. Theor. Phys., 50, 3, 579-582 (2008) · Zbl 1392.35078
[55] Wazwaz, A. M., A variety of soliton solutions for the Boussinesq-Burgers equation and the higher-order Boussinesq-Burgers equation, Filomat, 31, 3, 831-840 (2017) · Zbl 1488.35493
[56] Wang, Y. H., CTE method to the interaction solutions of Boussinesq-Burgers equations, Appl. Math. Lett., 38, 100-105 (2014) · Zbl 1314.35153
[57] Sawada, K.; Kotera, T., A method for finding N-soliton solutions of the K.d.V. equation and K.d.V.-like equation, Prog. Theor. Phys., 51, 5, 1355-1367 (1974) · Zbl 1125.35400
[58] Caudrey, P. J.; Dodd, R. K.; Gibbon, J. D., A new hierarchy of Korteweg-de Vries equations, Proc. R. Soc. A, 351, 1666, 407-422 (1976) · Zbl 0346.35024
[59] Ye, L. J.; Lin, J., Different-periodic travelling wave solutions for nonlinear equations, Commun. Theor. Phys., 41, 4, 481 (2004) · Zbl 1167.35491
[60] Bilge, A. H., Singular travelling wave solutions of the fifth-order KdV, Sawada-Kotera and Kaup equations, J. Phys. A, Math. Gen., 29, 16, 4967 (1996) · Zbl 0898.35088
[61] Lou, S. Y., Twelve sets of symmetrics of Caudrey-Dodd-Gibbon-Sawada-Kotera equation, Phys. Lett. A, 175, 1, 23-26 (1993)
[62] Rady, A. S.A.; Osman, E. S.; Khalfallah, M., Multi-soliton solution, rational solution of the Boussinesq-Burgers equations, Commun. Nonlinear Sci. Numer. Simul., 15, 5, 1172-1176 (2010) · Zbl 1221.35359
[63] Dong, M. J.; Tian, S. F.; Yan, X. W., Nonlocal symmetries, conservation laws and interaction solutions for the classical Boussinesq-Burgers equation, Nonlinear Dyn., 95, 1, 273-291 (2019) · Zbl 1439.35123
[64] Stratmann, M.; Pagel, T.; Mitschke, F., Experimental observation of temporal soliton molecules, Phys. Rev. Lett., 95, 14, Article 143902 pp. (2005)
[65] Lakomy, K.; Nath, R.; Santos, L., Soliton molecules in dipolar Bose-Einstein condensates, Phys. Rev. A, 86, 1, Article 013610 pp. (2012)
[66] Lou, S. Y., Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance, J. Phys. Commun., 4, 4, Article 041002 pp. (2020)
[67] Ren, B.; Lin, J., Soliton molecules, nonlocal symmetry and CRE method of the KdV equation with higher-order corrections, Phys. Scr., 95, 7, Article 075202 pp. (2020)
[68] Wang, W.; Yao, R. X.; Lou, S. Y., Abundant traveling wave structures of (1+1)-dimensional Sawada-Kotera equation: few cycle solitons and soliton molecules, Chin. Phys. Lett., 37, 10, Article 100501 pp. (2020)
[69] Stein, M. L., Large sample properties of simulations using Latin hypercube sampling, Technometrics, 29, 2, 143-151 (1987) · Zbl 0627.62010
[70] Wang, M. L.; Zhou, Y. B.; Li, Z. B., Application of homogeneous balance method to exact solutions of nonlinear equation in mathematical physics, Phys. Lett. A, 216, 1-5, 67-75 (1996) · Zbl 1125.35401
[71] Li, M.; Hu, W. K.; Wu, C. F., Rational solutions of the classical Boussinesq-Burgers system, Nonlinear Dyn., 94, 2, 1291-1302 (2018)
[72] Jiang, Y. L.; Chen, C., Lie group analysis and dynamical behavior for classical Boussinesq-Burgers system, Nonlinear Anal., Real World Appl., 47, 385-397 (2019) · Zbl 1409.35021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.