×

A two-stage adaptive stochastic collocation method on nested sparse grids for multiphase flow in randomly heterogeneous porous media. (English) Zbl 1378.76109

Summary: A new computational method is proposed for efficient uncertainty quantification of multiphase flow in porous media with stochastic permeability. For pressure estimation, it combines the dimension-adaptive stochastic collocation method on Smolyak sparse grids and the Kronrod-Patterson-Hermite nested quadrature formulas. For saturation estimation, an additional stage is developed, in which the pressure and velocity samples are first generated by the sparse grid interpolation and then substituted into the transport equation to solve for the saturation samples, to address the low regularity problem of the saturation. Numerical examples are presented for multiphase flow with stochastic permeability fields to demonstrate accuracy and efficiency of the proposed two-stage adaptive stochastic collocation method on nested sparse grids.

MSC:

76S05 Flows in porous media; filtration; seepage
76T99 Multiphase and multicomponent flows
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs

Software:

TESTPACK; PATSYM; HRMSYM
Full Text: DOI

References:

[1] Kitanidis, P. K., Introduction to Geostatistics (1997), Cambridge University Press · Zbl 0922.65002
[2] Zhang, D., Stochastic Methods for Flow in Porous Media: Coping with Uncertainties (2001), Academic Press
[3] Yoram, R., Applied Stochastic Hydrogeology (2003), Oxford University Press
[4] Ghanem, R., Probabilistic characterization of transport in heterogeneous media, Comput. Methods Appl. Mech. Eng., 158, 199-220 (1998) · Zbl 0954.76079
[5] Xiu, D.; Karniadakis, G. E., Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys., 187, 137-167 (2003) · Zbl 1047.76111
[6] Li, L.; Tchelepi, H. A.; Zhang, D., Perturbation-based moment equation approach for flow in heterogeneous porous media: applicability range and analysis of high-order terms, J. Comput. Phys., 188, 296-317 (2003) · Zbl 1127.76351
[7] Müller, F.; Jenny, P.; Meyer, D. W., Probabilistic collocation and Lagrangian sampling for advective tracer transport in randomly heterogeneous porous media, Adv. Water Resour., 34, 1527-1538 (2011)
[8] Mathelin, L.; Hussaini, M. Y., A Stochastic Collocation Algorithm for Uncertainty Analysis (2003), NASA Tech. Rep. NASA/CR-2003-212153
[9] Xiu, D.; Hesthaven, J. S., High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 1118-1139 (2005) · Zbl 1091.65006
[10] Babuška, I.; Nobile, F.; Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 1005-1034 (2007) · Zbl 1151.65008
[11] Nobile, F.; Tempone, R.; Webster, C. G., A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 2309-2345 (2008) · Zbl 1176.65137
[12] Lin, G.; Tartakovsky, A. M.; Tartakovsky, D. M., Uncertainty quantification via random domain decomposition and probabilistic collocation on sparse grids, J. Comput. Phys., 229, 6995-7012 (2010) · Zbl 1263.65006
[13] Le Maitre, O. P.; Knio, O. M., Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics (2010) · Zbl 1193.76003
[14] Xiu, D., Numerical Methods for Stochastic Computations: A Spectral Method Approach (2010), Princeton University Press · Zbl 1210.65002
[15] Gerstner, T.; Griebel, M., Dimension-adaptive tensor-product quadrature, Computing, 71, 65-87 (2003) · Zbl 1030.65015
[16] Klimke, W. A., Uncertainty Modeling Using Fuzzy Arithmetic and Sparse Grids (2006) · Zbl 1087.65063
[17] Ganapathysubramanian, B.; Zabaras, N., Sparse grid collocation schemes for stochastic natural convection problems, J. Comput. Phys., 225, 652-685 (2007) · Zbl 1343.76059
[18] Nobile, F.; Tempone, R.; Webster, C. G., An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 2411-2442 (2008) · Zbl 1176.65007
[19] Kythe, P. K.; Schäferkotter, M. R., Handbook of Computational Methods for Integration (2004), CRC Press
[20] Patterson, T. C.L., The optimum addition of points to quadrature formulae, Math. Comput., 22, 847-856 (1968) · Zbl 0172.19304
[21] Clenshaw, C. W.; Curtis, A. R., A method for numerical integration on an automatic computer, Numer. Math., 2, 197-205 (1960) · Zbl 0093.14006
[22] Elhay, S.; Kautsky, J., Generalized Kronrod Patterson type imbedded quadratures, Appl. Math., 37, 81-103 (1992) · Zbl 0754.65025
[23] Genz, A.; Keister, B. D., Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight, J. Comput. Appl. Math., 71, 299-309 (1996) · Zbl 0856.65011
[24] Lin, G.; Tartakovsky, A. M., An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media, Adv. Water Resour., 32, 712-722 (2009)
[25] Foo, J.; Wan, X.; Karniadakis, G. E., The multi-element probabilistic collocation method (ME-PCM): error analysis and applications, J. Comput. Phys., 227, 9572-9595 (2008) · Zbl 1153.65008
[26] Foo, J.; Karniadakis, G. E., Multi-element probabilistic collocation method in high dimensions, J. Comput. Phys., 229, 1536-1557 (2010) · Zbl 1181.65014
[27] Le Maitre, O. P.; Knio, O. M.; Najm, H. N.; Ghanem, R. G., Uncertainty propagation using Wiener-Haar expansions, J. Comput. Phys., 197, 28-57 (2004) · Zbl 1052.65114
[28] Ma, X.; Zabaras, N., An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations, J. Comput. Phys., 228, 3084-3113 (2009) · Zbl 1161.65006
[29] Ma, X.; Zabaras, N., An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations, J. Comput. Phys., 229, 3884-3915 (2010) · Zbl 1189.65019
[30] Liao, Q.; Zhang, D., Probabilistic collocation method for strongly nonlinear problems: 1. Transform by location, Water Resour. Res., 49, 7911-7928 (2013)
[31] Liao, Q.; Zhang, D., Probabilistic collocation method for strongly nonlinear problems: 2. Transform by displacement, Water Resour. Res., 50, 8736-8759 (2014)
[32] Liao, Q.; Zhang, D., Probabilistic collocation method for strongly nonlinear problems: 3. Transform by time, Water Resour. Res., 52, 2366-2375 (2016)
[33] Bear, J., Dynamics of Fluids in Porous Media (1972), Elsevier: Elsevier New York, 764 pp · Zbl 1191.76001
[34] Gerritsen, M. G.; Durlofsky, L. J., Modeling fluid flow in oil reservoirs, Annu. Rev. Fluid Mech., 37, 211-238 (2005) · Zbl 1082.76107
[35] Li, W.; Lin, G.; Li, B., Inverse regression-based uncertainty quantification algorithms for high-dimensional models: theory and practice, J. Comput. Phys., 321, 259-278 (2016) · Zbl 1349.62133
[36] Barthelmann, V.; Novak, E.; Ritter, K., High dimensional polynomial interpolation on sparse grids, Adv. Comput. Math., 12, 273-288 (2000) · Zbl 0944.41001
[37] Kronrod, A. S., Nodes and Weights of Quadrature Formulas, Sixteen-Place Tables (1965) · Zbl 0154.18501
[38] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements: A Spectral Approach (2003), Courier Corporation
[39] Zhang, D.; Lu, Z., An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loeve and polynomial expansions, J. Comput. Phys., 194, 773-794 (2004) · Zbl 1101.76048
[40] Zhang, D.; Tchelepi, H., Stochastic analysis of immiscible two-phase flow in heterogeneous media, SPE J., 4, 380-388 (1999)
[41] Li, W.; Lin, G.; Zhang, D., An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling, J. Comput. Phys., 258, 752-772 (2014) · Zbl 1349.65025
[42] Chen, Z.; Huan, G.; Ma, Y., Computational Methods for Multiphase Flows in Porous Media (2006), SIAM · Zbl 1092.76001
[43] Voskov, D. V.; Tchelepi, H. A., Comparison of nonlinear formulations for two-phase multi-component EoS based simulation, J. Pet. Sci. Eng., 82, 101-111 (2012)
[44] Genz, A., A package for testing multiple integration subroutines, (Numerical Integration (1987), Springer), 337-340
[45] M.S. Eldred, Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design, AIAA Paper 2274, 2009.; M.S. Eldred, Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design, AIAA Paper 2274, 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.