×

Generically free representations. I: Large representations. (English) Zbl 1511.20184

Summary: This paper concerns a faithful representation \(V\) of a simple linear algebraic group \(G\). Under mild assumptions, we show that if \(V\) is large enough, then the Lie algebra of \(G\) acts generically freely on \(V\). That is, the stabilizer in \(\mathrm{Lie}(G)\) of a generic vector in \(V\) is zero. The bound on \(\dim V\) grows like \((\operatorname{rank } G)^2\) and holds with only mild hypotheses on the characteristic of the underlying field. The proof relies on results on generation of Lie algebras by conjugates of an element that may be of independent interest. We use the bound in subsequent works [Transform. Groups 25, No. 3, 793–817 (2020; Zbl 1484.20076); ibid. 25, No. 3, 819-841 (2020; Zbl 1484.20077)] to determine which irreducible faithful representations are generically free, with no hypothesis on the characteristic of the field. This in turn has applications to the question of which representations have a stabilizer in general position.

MSC:

20G05 Representation theory for linear algebraic groups
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B20 Simple, semisimple, reductive (super)algebras
17B45 Lie algebras of linear algebraic groups
22E60 Lie algebras of Lie groups

References:

[1] ; Andreev, Funkcional. Anal. i Priložen., 5, 1 (1971)
[2] ; Andreev, Funkcional. Anal. i Priložen., 1, 3 (1967)
[3] 10.1007/s11856-012-0030-3 · Zbl 1266.20060 · doi:10.1007/s11856-012-0030-3
[4] 10.4007/annals.2010.171.533 · Zbl 1252.11034 · doi:10.4007/annals.2010.171.533
[5] 10.1006/jabr.2000.8508 · Zbl 1076.17500 · doi:10.1006/jabr.2000.8508
[6] ; Dynkin, Mat. Sb. (N.S.), 30(72), 349 (1952) · Zbl 0048.01701
[7] ; Elashvili, Funkcional. Anal. i Priložen., 6, 51 (1972)
[8] 10.1016/j.exmath.2005.11.001 · Zbl 1104.22017 · doi:10.1016/j.exmath.2005.11.001
[9] 10.1112/S0010437X16008162 · Zbl 1498.11113 · doi:10.1112/S0010437X16008162
[10] 10.1007/s00031-020-09591-3 · Zbl 1484.20076 · doi:10.1007/s00031-020-09591-3
[11] 10.1007/s00031-020-09590-4 · Zbl 1484.20077 · doi:10.1007/s00031-020-09590-4
[12] 10.1007/BF02764077 · Zbl 1007.20041 · doi:10.1007/BF02764077
[13] 10.1007/BF02764078 · Zbl 1007.20042 · doi:10.1007/BF02764078
[14] 10.1016/S0021-8693(03)00182-0 · Zbl 1037.20016 · doi:10.1016/S0021-8693(03)00182-0
[15] 10.2307/1997656 · Zbl 0332.14017 · doi:10.2307/1997656
[16] 10.1007/BF01214043 · Zbl 0387.20038 · doi:10.1007/BF01214043
[17] ; Humphreys, Conjugacy classes in semisimple algebraic groups. Math. Surv. Monogr., 43 (1995) · Zbl 0834.20048
[18] ; Karpenko, Proc. Int. Congress Math., II, 146 (2010)
[19] 10.1007/978-3-642-75401-2 · doi:10.1007/978-3-642-75401-2
[20] 10.1090/coll/044 · doi:10.1090/coll/044
[21] 10.1090/surv/180 · doi:10.1090/surv/180
[22] 10.1112/S0010437X12000565 · Zbl 1260.14059 · doi:10.1112/S0010437X12000565
[23] ; Lötscher, Doc. Math., Merkurjev special issue, 443 (2015) · Zbl 1355.16010
[24] 10.1515/crelle.2012.010 · Zbl 1354.14071 · doi:10.1515/crelle.2012.010
[25] 10.1112/S1461157000000838 · Zbl 1053.20008 · doi:10.1112/S1461157000000838
[26] 10.1007/s00031-013-9216-y · Zbl 1278.14066 · doi:10.1007/s00031-013-9216-y
[27] ; Popov, Trudy Moskov. Mat. Obshch., 50, 209 (1987) · Zbl 0661.22009
[28] ; Popov, Mat. Sb. (N.S.), 135(177), 385 (1988)
[29] 10.1007/978-3-662-03073-8_2 · Zbl 0789.14008 · doi:10.1007/978-3-662-03073-8_2
[30] 10.1112/S0024610797004900 · Zbl 0889.17019 · doi:10.1112/S0024610797004900
[31] ; Reichstein, Proc. Int. Congress Math., II, 162 (2010)
[32] 10.1090/memo/0365 · Zbl 0624.20022 · doi:10.1090/memo/0365
[33] ; Demazure, Schémas en groupes, Tome II : Groupes de type multiplicatif, et structure des schémas en groupes généraux, Exposés VIII-XVIII. Lecture Notes in Math., 152 (1970) · Zbl 0209.24201
[34] ; Demazure, Schémas en groupes, Tome III : Structure des schémas en groupes réductifs, Exposés XIX-XXVI. Doc. Math, 8 (2011) · Zbl 0163.27402
[35] 10.1007/BFb0081546 · doi:10.1007/BFb0081546
[36] 10.1017/S0027763000011016 · Zbl 0271.20019 · doi:10.1017/S0027763000011016
[37] 10.1090/ulect/066 · Zbl 1361.20003 · doi:10.1090/ulect/066
[38] ; Strade, Modular Lie algebras and their representations. Monogr. Textbooks Pure Appl. Math., 116 (1988) · Zbl 0648.17003
[39] 10.1112/jlms/s2-16.2.237 · Zbl 0922.35025 · doi:10.1112/jlms/s2-16.2.237
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.