×

Dynamical analysis of a diffusive population-toxicant model with toxicant-taxis in polluted aquatic environments. (English) Zbl 1543.35253

Summary: This paper deals with a diffusive population-toxicant model in polluted aquatic environments, with a toxicant-taxis term describing a toxicant-induced behavior change, that is, the population tends to move away from locations with high-level toxicants. The global existence of solutions is established by the techniques of the semigroup estimation and Moser iteration. Based on a detailed study on the properties of the principal eigenvalue for non-self-adjoint eigenvalue problems, we investigated the local and global stability of the toxin-only steady-state solution and the existence of positive steady state, which yields sufficient conditions that lead to population persistence or extinction. Finally, by numerical simulations, we studied the effects of some key parameters, such as toxicant-taxis coefficient, advection rate, and effect coefficient of the toxicant on population growth, on population persistence. Both numerical and analytical results show that a weak chemotaxis effect, a small advection rate of the population, and a weak effect of the toxicant on population growth are favorable for population persistence.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92D25 Population dynamics (general)
92C17 Cell movement (chemotaxis, etc.)
35K57 Reaction-diffusion equations
35B32 Bifurcations in context of PDEs
35B35 Stability in context of PDEs
35P15 Estimates of eigenvalues in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] Pastorok, R. A.; Bartell, S. M.; Ferson, S.; Ginzburg, L. R., Ecological Modeling in Risk Assessment: Chemical Effects on Populations, Ecosystems, and Landscapes, 2001, Lewis Publishers: Lewis Publishers Boca Raton, FL, USA
[2] Camargo, J. A.; Alonso, Á., Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment, Environ. Int., 32, 831-849, 2006
[3] Clements, W. H.; Kotalik, C., Effects of major ions on natural benthic communities: an experimental assessment of the US environmental protection agency aquatic life benchmark for conductivity, Freshw. Sci., 35, 126-138, 2016
[4] Fleeger, J. W.; Carman, K. R.; Nisbet, R. M., Indirect effects of contaminants in aquatic ecosystems, Sci. Total Environ., 317, 207-233, 2003
[5] Hanazato, T., Pesticide effects on freshwater zooplankton: an ecological perspective, Environ. Pollut., 112, 1-10, 2001
[6] Smith, A. J.; Tran, C. P., A weight-of-evidence approach to define nutrient criteria protective of aquatic life in large rivers, J. North Am. Benthol. Soc., 29, 875-891, 2010
[7] Yang, S.; Xu, F.; Wu, F.; Wang, S.; Zheng, B., Development of PFOS and PFOA criteria for the protection of freshwater aquatic life in China, Sci. Total Environ., 470-471, 677-683, 2014
[8] Zabel, T. F.; Cole, S., The derivation of environmental quality standards for the protection of aquatic life in the UK, J. Chart. Inst. Water Environ. Manag., 13, 436-440, 1999
[9] Hayashi, T. I.; Kamo, M.; Tanaka, Y., Population-level ecological effect assessment: estimating the effect of toxic chemicals on density-dependent population, Ecol. Res., 24, 945-954, 2009
[10] Jager, T.; Klok, C., Extrapolating toxic effects on individuals to the population level: the role of dynamic energy budgets, Philos. Trans. R. Soc. B, 365, 3531-3540, 2010
[11] Spromberg, J. A.; Meador, J. P., Relating chronic toxicity responses to population-level effects: A comparison of population-level parameters for three salmon species as a function of low-level toxicity, Ecol. Model., 199, 240-252, 2006
[12] Erickson, R. A.; Cox, S. B.; Oates, J. L.; Anderson, T. A.; Salice, C. J.; Long, K. R., A daphnia populaiton model that considers pesticide exposure and demography stochasticity, Ecol. Model., 275, 37-47, 2014
[13] Spromberg, J. A.; Birge, W. J., Modeling the effects of chronic toxicity on fish populations: the influence of life-history sprategies, Environ. Toxicol. Chem., 24, 1532-1540, 2005
[14] Freedman, H. I.; Shukla, J. B., Models for the effect of toxicant in single-species and predator-prey systems, J. Math. Biol., 30, 15-30, 1991 · Zbl 0825.92125
[15] Hallam, T. G.; Clark, C. E.; Jordan, G. S., Effects of toxicants on populations: A qualitative approach II. First order kinetics, J. Math. Biol., 18, 25-37, 1983 · Zbl 0548.92019
[16] Hallam, T. G.; Clark, C. E.; Lassiter, R. R., Effects of toxicants on populations: A qualitative approach I. Equilibrium environmental exposure, Ecol. Model., 18, 291-304, 1983 · Zbl 0548.92018
[17] Hallam, T. G.; De Luna, J. T., Effects of toxicants on populations: A qualitative approach. III. Environmental and food chain pathways, J. Theoret. Biol., 109, 411-429, 1984
[18] Huang, Q.; Wang, H.; Lewis, M. A., The impact of environmental toxins on predator-prey dynamics, J. Theoret. Biol., 378, 12-30, 2015 · Zbl 1343.92539
[19] Huang, Q.; Seo, G.; Shan, C., Bifurcations and global dynamics in a toxin-dependent aquatic population model, Math. Biosci., 296, 26-35, 2018 · Zbl 1380.92053
[20] Lan, G.; Wei, C.; Zhang, S., Long time behaviors of single-species population models with psychological effect and impulsive toxicant in polluted environments, Physica A, 521, 828-842, 2019 · Zbl 1514.92091
[21] Ma, Z.; Cui, G.; Wang, W., Persistence and extinction of a population in a polluted environment, Math. Biosci., 101, 75-97, 1990 · Zbl 0714.92027
[22] Zhou, P.; Huang, Q., A spatiotemporal model for the effects of toxicants on populations in a polluted river, SIAM J. Appl. Math., 82, 95-118, 2022 · Zbl 1481.92187
[23] Wolfe, B. W.; Lowe, C. G., Movement patterns, habitat use and site fidelity of the white croaker (genyonemus lineatus) in the palos verdes superfund site, Los Angeles, California, Mar. Environ. Res., 109, 69-80, 2015
[24] Deng, X.; Huang, Q.; Wang, Z.-A., Global dynamics and pattern formation in a diffusive population-toxicant model with negative toxicant-taxis, SIAM J. Appl. Math., 86, 2212-2236, 2023 · Zbl 1530.92175
[25] Lutscher, F.; Lewis, M. A.; McCauley, E., Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68, 2129-2160, 2006 · Zbl 1296.92211
[26] McKenzie, H. W.; Jin, Y.; Jacobsen, J.; Lewis, M. A., \( R_0\) Analysis of a spationtemporal model for a stream population, SIAM J. Appl. Dyn. Syst., 11, 567-596, 2012 · Zbl 1252.35068
[27] Pachepsky, E.; Lutscher, F.; Nisbet, R. M.; Lewis, M. A., Persistence, spread and the drift paradox, Theor. Popul. Biol., 67, 61-73, 2005 · Zbl 1071.92043
[28] Speirs, D.; Gurney, W., Population persistence in rivers and estuaries, Ecology, 82, 1219-1237, 2001
[29] Müller, K., Investigation on the organic drift in north Swedish streams, Rep. Inst. Freshw. Res. Drottningholm, 35, 133-148, 1954
[30] Müller, K., The colonization cycle of freshwater insects, Oecologica, 53, 202-207, 1982
[31] Lam, K.-Y.; Liu, S.; Lou, Y., Selected topics on reaction-diffusion-advection models from spatial ecology, Math. Appl. Sci. Eng., 1, 150-180, 2020 · Zbl 1498.92304
[32] Lam, K.-Y.; Lou, Y.; Lutscher, F., The emergence of range limits in advective environments, SIAM J. Appl. Math., 76, 641-662, 2016 · Zbl 1338.92146
[33] Bellomo, N.; Bellouquid, A.; Tao, Y.; Winkler, M., Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 9, 1663-1763, 2015 · Zbl 1326.35397
[34] Arumugam, G.; Tyagi, J., Keller-Segel chemotaxis models: A review, Acta Appl. Math., 171, 1-82, 2021 · Zbl 1464.35001
[35] Jin, H.; Wang, Z.-A., Global stability of prey-taxis systems, J. Differential Equations, 262, 1257-1290, 2017 · Zbl 1364.35143
[36] Wu, S.; Shi, J.-P.; Wu, B., Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260, 5847-5874, 2016 · Zbl 1335.35131
[37] Wu, S.; Shi, J.-P.; Wang, J., Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci., 28, 2275-2312, 2018 · Zbl 1411.35171
[38] Wang, X.; Wang, W.; Zhang, G., Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci., 38, 431-443, 2015 · Zbl 1307.92333
[39] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215, 52-107, 2005 · Zbl 1085.35065
[40] Stinner, C.; Tello, J. I.; Winkler, M., Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68, 1607-1626, 2014 · Zbl 1319.92050
[41] Krein, M. G.; Rutman, M. A., Linear operators leaving invariant a cone in a Banach space, Usp. Mat. Nauk., 3, 3-95, 1948 · Zbl 0030.12902
[42] Cantrell, R. S.; Cosner, C., (Spatial Ecology Via Reaction-Diffusion Equations. Spatial Ecology Via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology, 2003, John Wiley & Sons: John Wiley & Sons Chichester) · Zbl 1059.92051
[43] Cantrell, R. S.; Cosner, C., On the steady-state problem for the Volterra-Lotka competition model with diffusion, Houston J. Math., 13, 337-352, 1987 · Zbl 0644.92016
[44] Lam, K.-Y.; Lou, Y., Introduction To Reaction-Diffusion Equations: Theory and Applications to Spatial Ecology and Evolutionary Biology, 2022, Springer: Springer Berlin · Zbl 1521.35001
[45] Lou, Y.; Lutscher, F., Evolution of dispersal in open advective environments, J. Math. Biol., 69, 1319-1342, 2014 · Zbl 1307.35144
[46] Ballyk, M.; Dung, L.; Jones, D. A.; Smith, H. L., Effects of random motility on microbial growth and competition in a flow reactor, SIAM J. Appl. Math., 59, 573-596, 1998 · Zbl 1051.92039
[47] Nie, H.; Wang, B.; Wu, J., Invasion analysis on a predator-prey system in open advective environments, J. Math. Biol., 81, 1429-1463, 2020 · Zbl 1458.35427
[48] Alikakos, N. D., \( L^p\) Bounds of solutions of reaction-diffusion equations, Commun. Partial Differ. Equations, 4, 827-868, 1979 · Zbl 0421.35009
[49] Wang, X., Qualitative behavior of solutions of chemotactic diffusion systems: effect of motility and chemotaxis and dynamics, SIAM J. Math. Anal., 31, 535-560, 2000 · Zbl 0990.92001
[50] Lou, Y.; Ni, W.-M., Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131, 79-131, 1996 · Zbl 0867.35032
[51] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011, Springer: Springer New York · Zbl 1220.46002
[52] Wang, X.; Xu, Q., Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly’s compactness theorem, J. Math. Biol., 66, 1241-1266, 2013 · Zbl 1301.92006
[53] Protter, M. H.; Weinberger, H. F., Maximum Principles in Differential Equations, 1984, Springer-Verlag: Springer-Verlag New York · Zbl 0549.35002
[54] Crandall, M. G.; Rabinowitz, P. H., Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321-340, 1971 · Zbl 0219.46015
[55] Shi, J.-P.; Wang, X., On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246, 2788-2812, 2009 · Zbl 1165.35358
[56] Shi, J.-P., Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169, 494-531, 1999 · Zbl 0949.47050
[57] López-Gómez, J., Global bifurcation for fredholm operators, Rend. Istit. Mat. Univ. Trieste, 48, 539-564, 2016 · Zbl 1454.47092
[58] Nie, H.; Wu, J., The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat, Discrete Contin. Dyn. Syst., 32, 303-329, 2012 · Zbl 1235.35276
[59] Wang, Q., Dynamics of a spatiotemporal model on populations in a polluted river, Nonlinear Anal. Real World Appl., 71, Article 103803 pp., 2023 · Zbl 1518.92135
[60] Winkler, M., Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283, 1664-1673, 2010 · Zbl 1205.35037
[61] Nirenberg, L., An extended interpolation inequality, Ann. Sc. Norm. Super Pisa Cl. Sci., 20, 733-737, 1966 · Zbl 0163.29905
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.