×

Rectification of a deep water model for surface gravity waves. (English) Zbl 1534.35313

Summary: We discuss an approximate model for the propagation of deep irrotational water waves, specifically the model obtained by keeping only quadratic nonlinearities in the water waves system under the Zakharov/Craig-Sulem formulation. We argue that the initial-value problem associated with this system is most likely ill-posed in finite regularity spaces, and that it explains the observation of spurious amplification of high-wavenumber modes in numerical simulations that were reported in the literature. This hypothesis has already been proposed by D. M. Ambrose et al. [Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 470, No. 2166, Article ID 20130849, 16 p. (2014; Zbl 1371.35210)] but we identify a different instability mechanism. On the basis of this analysis, we show that the system can be “rectified”. Indeed, by introducing appropriate regularizing operators, we can restore the well-posedness without sacrificing other desirable features such as a canonical Hamiltonian structure, cubic accuracy as an asymptotic model, and efficient numerical integration. This provides a first rigorous justification for the common practice of applying filters in high-order spectral methods for the numerical approximation of surface gravity waves. While our study is restricted to a quadratic model, we believe it can be generalized to any order and paves the way towards the rigorous justification of a robust and efficient strategy to approximate water waves with arbitrary accuracy. Our study is supported by detailed and reproducible numerical simulations.

MSC:

35Q35 PDEs in connection with fluid mechanics
76B07 Free-surface potential flows for incompressible inviscid fluids
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
76E30 Nonlinear effects in hydrodynamic stability
76M22 Spectral methods applied to problems in fluid mechanics
35G25 Initial value problems for nonlinear higher-order PDEs
35B65 Smoothness and regularity of solutions to PDEs
35R25 Ill-posed problems for PDEs
35R35 Free boundary problems for PDEs
65M30 Numerical methods for ill-posed problems for initial value and initial-boundary value problems involving PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

Citations:

Zbl 1371.35210

References:

[1] 10.1111/j.1467-9590.2008.00409.x · Zbl 1191.35211 · doi:10.1111/j.1467-9590.2008.00409.x
[2] 10.1098/rspa.2013.0849 · Zbl 1371.35210 · doi:10.1098/rspa.2013.0849
[3] 10.1002/sapm1964431309 · Zbl 0128.44601 · doi:10.1002/sapm1964431309
[4] 10.1137/141000671 · Zbl 1356.68030 · doi:10.1137/141000671
[5] 10.1007/s00526-021-01934-6 · Zbl 1471.46030 · doi:10.1007/s00526-021-01934-6
[6] 10.1007/s42286-019-00005-w · Zbl 1451.76022 · doi:10.1007/s42286-019-00005-w
[7] 10.1017/S0022112095002011 · Zbl 0920.76013 · doi:10.1017/S0022112095002011
[8] 10.1061/(asce)0733-9399(1999)125:7(756) · doi:10.1061/(asce)0733-9399(1999)125:7(756)
[9] 10.1006/jcph.1993.1164 · Zbl 0778.76072 · doi:10.1006/jcph.1993.1164
[10] 10.1088/0951-7715/5/2/009 · Zbl 0742.76012 · doi:10.1088/0951-7715/5/2/009
[11] 10.1017/s002211208700288x · doi:10.1017/s002211208700288x
[12] 10.1016/0375-9601(96)00417-3 · doi:10.1016/0375-9601(96)00417-3
[13] ; Hörmander, Lars, Lectures on nonlinear hyperbolic differential equations. Mathématiques & Applications (Berlin), 26, (1997) · Zbl 0881.35001
[14] 10.1007/s00205-012-0604-6 · Zbl 1278.35194 · doi:10.1007/s00205-012-0604-6
[15] 10.1090/surv/188 · doi:10.1090/surv/188
[16] 10.1063/1.3053183 · Zbl 1183.76294 · doi:10.1063/1.3053183
[17] 10.1103/PhysRevLett.69.609 · Zbl 0968.76516 · doi:10.1103/PhysRevLett.69.609
[18] 10.1007/s10231-020-00966-7 · Zbl 1473.46043 · doi:10.1007/s10231-020-00966-7
[19] ; Nicholls, David P., High-order perturbation of surfaces short course: boundary value problems, Lectures on the theory of water waves. London Math. Soc. Lecture Note Ser., 426, 1, (2016) · Zbl 1360.76058
[20] 10.1002/sapm1972513253 · Zbl 0282.65083 · doi:10.1002/sapm1972513253
[21] 10.1007/978-1-4612-5561-1 · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[22] 10.1063/1.4738638 · Zbl 1426.76076 · doi:10.1063/1.4738638
[23] 10.1016/j.coastaleng.2007.11.002 · doi:10.1016/j.coastaleng.2007.11.002
[24] 10.1017/S0022112098001219 · Zbl 0911.76011 · doi:10.1017/S0022112098001219
[25] ; Stokes, G. G., On the theory of oscillatory waves, Trans. Cambridge Philos. Soc., 8, 4, 441, (1847)
[26] 10.1137/1.9780898719598 · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[27] 10.1029/jc092ic11p11803 · doi:10.1029/jc092ic11p11803
[28] 10.1090/conm/635/12713 · doi:10.1090/conm/635/12713
[29] 10.1007/bf00913182 · doi:10.1007/bf00913182
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.