×

Orbital stability of standing waves for the Sobolev critical Schrödinger equation with inverse-power potential. (English) Zbl 1540.35366

Summary: In this paper, we study the Cauchy problem for the nonlinear Schrödinger equation with focusing inverse-power potential and the Sobolev critical nonlinearity. By considering the corresponding local minimization problem, we show that the existence of ground state solutions. Then, we prove that the solution of this equation exists globally when the initial data \(\varphi\) sufficiently close to the ground states. Based on these results, we show that the set of ground states is orbitally stable.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
35B35 Stability in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] Bensouilah, A.; Dinh, VD; Zhu, S., On stability and instability of standing waves for the nonlinear Schrödinger equation with an inverse-square potential, J. Math. Phys., 59, 2018 · Zbl 1402.35255 · doi:10.1063/1.5038041
[2] Brézis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, 486-490, 1983 · Zbl 0526.46037 · doi:10.1090/S0002-9939-1983-0699419-3
[3] Cazenave, T., Semilinear Schrödinger Equations, 2003, New York: American Mathematics Society, New York · Zbl 1055.35003 · doi:10.1090/cln/010
[4] Cazenave, T.; Lions, PL, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85, 549-561, 1982 · Zbl 0513.35007 · doi:10.1007/BF01403504
[5] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T., Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in \({\mathbb{R} }^3\), Ann. Math., 167, 767-865, 2008 · Zbl 1178.35345 · doi:10.4007/annals.2008.167.767
[6] Dinh, VD, Global existence and blowup for a class of the focusing nonlinear Schrödinger equation with inverse-square potential, J. Math. Anal. Appl., 468, 270-303, 2018 · Zbl 1403.35273 · doi:10.1016/j.jmaa.2018.08.006
[7] Dinh, VD, On nonlinear Schrödinger equations with attractive inverse-power potentials, Topol. Methods Nonlinear Anal., 57, 489-523, 2021 · Zbl 1477.35237
[8] Feng, B.; Zhang, H., Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl., 460, 352-364, 2018 · Zbl 1470.35392 · doi:10.1016/j.jmaa.2017.11.060
[9] Fukaya, N., Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential, Commun. Pure Appl. Anal., 20, 121-143, 2021 · Zbl 1464.35071 · doi:10.3934/cpaa.2020260
[10] Fukaya, N.; Ohta, M., Strong instability of standing waves for the nonlinear Schrödinger equations with attractive inverse power potential, Osaka J. Math., 56, 713-726, 2019 · Zbl 1431.35172
[11] Fukuizumi, R.; Ohta, M., Stability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations, 16, 111-128, 2003 · Zbl 1031.35132
[12] Jeanjean, L., Existence of solutions with prescribed norm for semilinear elliplic equations, Nonlinear Anal., 28, 1633-1659, 1997 · Zbl 0877.35091 · doi:10.1016/S0362-546X(96)00021-1
[13] Jeanjean, L.; Jendrej, J.; Le, TT; Visciglia, N., Orbital stability of ground states for a Sobolev critical Schrödinger equation, J. Math. Pures Appl., 164, 158-179, 2022 · Zbl 1537.35324 · doi:10.1016/j.matpur.2022.06.005
[14] Jia, H.; Luo, X., Prescribed mass standing waves for energy critical Hartree equations, Calc. Var., 62, 71, 2023 · Zbl 1506.35096 · doi:10.1007/s00526-022-02416-z
[15] Keel, M.; Tao, T., Endpoint Strichartz estimates, Amer. J. Math., 120, 955-980, 1998 · Zbl 0922.35028 · doi:10.1353/ajm.1998.0039
[16] Kenig, CE; Merle, F., Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166, 645-675, 2006 · Zbl 1115.35125 · doi:10.1007/s00222-006-0011-4
[17] Li, J.; Ma, L., Extremals to new Gagliardo-Nirenberg inequality and ground states, Appl. Math. Letters, 120, 2021 · Zbl 1475.35010 · doi:10.1016/j.aml.2021.107266
[18] Li, X.; Zhao, J., Orbital stability of standing waves for Schrödinger type equations with slowly decaying linear potential, Comput. Math. Appl., 79, 303-316, 2020 · Zbl 1443.35146 · doi:10.1016/j.camwa.2019.06.030
[19] Lu, J.; Miao, C.; Murphy, J., Scattering in \(H^1\) for the intercritical NLS with an inverse-square potential, J. Differential Equations, 264, 3174-3211, 2018 · Zbl 1387.35554 · doi:10.1016/j.jde.2017.11.015
[20] Meng, Y., Existence of stable standing waves for the nonlinear Schrödinger equation with attractive inverse-power potentials, AIMS Mathematics, 7, 5957-5970, 2022 · doi:10.3934/math.2022332
[21] Messiah, A., Quantum Mechanics, 1961, Amsterdam: North Holland, Amsterdam
[22] Ohta, M., Stability and instability of standing waves for one-dimensional nonlinear Schrödinger equations with double power nonlinearity, Kodai Math. J., 18, 68-74, 1995 · Zbl 0868.35111 · doi:10.2996/kmj/1138043354
[23] Okazawa, N.; Suzuki, T.; Yokota, T., Energy methods for abstract nonlinear Schrödinger equations, Evol. Equ. Control Theory, 1, 337-354, 2012 · Zbl 1283.35128 · doi:10.3934/eect.2012.1.337
[24] Ozawa, T., Remarks on proofs of conservation laws for nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 25, 403-408, 2006 · Zbl 1089.35071 · doi:10.1007/s00526-005-0349-2
[25] Series, G., Spectrum of Atomic Hydrogen, 1957, Oxford: Oxford University Press, Oxford
[26] Zhang, J.; Zhu, S., Stability of standing waves for the nonlinear fractional Schrödinger equation, J. Dynam. Differential Equations., 29, 1017-1030, 2017 · Zbl 1384.35123 · doi:10.1007/s10884-015-9477-3
[27] Zhu, S., Existence of stable standing waves for the fractional Schrödinger equations with combined nonlinearities, J. Evol. Equ., 17, 1003-1021, 2017 · Zbl 1381.35166 · doi:10.1007/s00028-016-0363-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.