×

Global well-posedness and exponential stability for Maxwell’s equations under delayed boundary condition in metamaterials. (English) Zbl 1518.35584

Summary: We develop an initial-boundary value problem derived from the Maxwell’s system with a nonlinear feedback-type boundary mechanism in metamaterials, which both involves polarization, magnetization effect and time-localized delay effect in a bounded domain. Based on the nonlinear semigroup theory and the properties of viscoelasticity theory, we show the well-posedness of solution in an appropriate Hilbert space. Under some suitable assumptions and geometric conditions, we prove the exponential stability of the Maxwell’s system.

MSC:

35Q61 Maxwell equations
78A40 Waves and radiation in optics and electromagnetic theory
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68U07 Computer science aspects of computer-aided design
93B52 Feedback control
93D15 Stabilization of systems by feedback
35R07 PDEs on time scales
Full Text: DOI

References:

[1] Basharin, A.; Kafesaki, M.; Economou, E.; Soukoulis, C., Backward wave radiation from negative permittivity waveguides and its use for THz sub-wavelength imaging, Opt. Express, 20, 12752-12760 (2012)
[2] Watts, C.; Liu, X.; Padilla, W., Metamaterial electromagnetic wave absorbers, Adv. Mater., 24, 98-120 (2012)
[3] Zhang, S.; Xia, C.; Fang, N., Broadband acoustic cloak for ultrasound waves, Phys. Rev. Lett., 106, Article 024301 pp. (2011)
[4] Chen, H.; Chen, M., Flipping photons backward: reversed Cherenkov radiation, Mater. Today, 14, 34-41 (2011)
[5] Duan, Z.; Wu, B.; Xi, S.; Chen, H.; Chen, M., Research progress in reversed Cherenkov radiation in double-negative metamaterials, Prog. Electromagn. Res., 90, 75-87 (2009)
[6] Xie, Z.; Wang, J.; Wang, B.; Chen, C., Solving Maxwell’s equation in meta-materials by a CG-DG method, Commun. Comput. Phys., 19, 1242-1264 (2016) · Zbl 1388.65111
[7] Shi, C.; Li, J.; Shu, C., Discontinuous Galerkin methods for Maxwell’s equations in Drude metamaterials on unstructured meshes, J. Comput. Appl. Math., 342, 147-163 (2018) · Zbl 1462.65156
[8] Li, J.; Huang, Y., Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials (2013), Springer: Springer Berlin, Heidelberg · Zbl 1304.78002
[9] Li, J.; Fang, Z.; Lin, G., Finite element analysis for wave propagation in double negative metamaterials, Comput. Methods Appl. Mech. Eng., 335, 24-51 (2007) · Zbl 1440.78007
[10] Cagnol, J.; Eller, M., Boundary regularity for Maxwell’s equations with applications to shape optimization, J. Differ. Equ., 250, 1114-1136 (2011) · Zbl 1208.35144
[11] Benaissa, A.; Benguessoum, A., Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the non-linear internal feedback, Int. J. Dyn. Syst. Differ. Equ., 5, 1-26 (2014) · Zbl 1331.35356
[12] Eller, M.; Lagnese, J.; Nicaise, S., Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Comput. Appl. Math., 21, 135-165 (2002) · Zbl 1119.93402
[13] Zemanová, V., Quasi-static Maxwell’s equations with a dissipative non-linear boundary condition: full discretization, J. Math. Anal. Appl., 418, 31-46 (2014) · Zbl 1312.78001
[14] Nicaise, S., Exact boundary controllability of Maxwell’s equations in heterogeneous media and application to an inverse source problem, SIAM J. Control Optim., 38, 1145-1170 (2000) · Zbl 0963.93041
[15] Nicaise, S.; Pignotti, C., Boundary stabilization of Maxwell’s equations with space-time variable coefficients, ESAIM Control Optim. Calc. Var., 9, 563-578 (2003) · Zbl 1063.93041
[16] Kirane, M.; Said-Houari, B., Existence and asymptotic stability of a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 62, 1065-1082 (2011) · Zbl 1242.35163
[17] Bahlil, M., On convexity for energy decay rates of a viscoelastic equation with a dynamic boundary and nonlinear delay term in the nonlinear internal feedback, Palest. J. Math., 7, 559-578 (2018) · Zbl 1393.35009
[18] Nibbi, R.; Polidoro, S., Exponential decay for Maxwell equations with a boundary memory condition, J. Math. Anal. Appl., 302, 30-55 (2005) · Zbl 1067.35121
[19] Shaw, S., Finite element approximation of Maxwell’s equations with Debye memory, Adv. Numer. Anal., 2010, 1-28 (2010) · Zbl 1221.78049
[20] Golden, J.; Graham, G., Boundary Value Problems in Linear Viscoelasticity (1988), Springer: Springer Berlin, Heidelberg · Zbl 0655.73021
[21] Giuseppe, T., Heat equation and convolution inequalities, Milan J. Math., 82, 183-212 (2014) · Zbl 1303.26023
[22] Lagnese, J., Exact boundary controllability of Maxwell’s equations in a general region, SIAM J. Control Optim., 27, 374-388 (1989) · Zbl 0678.49032
[23] Khusainov, D.; Pokojovy, M.; Racke, R., Strong and mild extrapolated \(L^2\)-solutions to the heat equation with constant delay, SIAM J. Math. Anal., 47, 427-454 (2015) · Zbl 1331.35357
[24] Showalter, R., Monotone operators in Banach space and nonlinear partial differential equations, Math. Surv. Monogr. (1997) · Zbl 0870.35004
[25] Eller, M.; Lagnese, J.; Nicaise, S., Stabilization of heterogeneous Maxwell’s equations by linear and nonlinear boundary feedbacks, Electron. J. Differ. Equ., 2002, 1-26 (2002) · Zbl 1030.93026
[26] Anikushyn, A.; Demchenko, A.; Pokojovy, M., On a Kelvin-Voigt viscoelastic wave equation with strong delay, SIAM J. Math. Anal., 51, 4382-4412 (2019) · Zbl 1427.35271
[27] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2010), Springer: Springer New York · Zbl 1218.46002
[28] Costabel, M.; Dauge, M., Un résultat de densité pour les équations de Maxwell régularisées dans un domaine lipschitzien, C. R. Acad. Sci., 327, 849-854 (1998) · Zbl 0921.35169
[29] Barbu, V., Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics (2010) · Zbl 1197.35002
[30] Vargas-De-León, C., Lyapunov functionals for global stability of Lotka-Volterra cooperative systems with discrete delays, (Abstraction and Application, vol. 12 (2015)), 42-50
[31] Anikushyn, A.; Pokojovy, M., Global well-posedness and exponential stability for heterogeneous anisotropic Maxwell’s equations under a nonlinear boundary feedback with delay, J. Comput. Appl. Math., 475, 278-312 (2019) · Zbl 1416.35258
[32] Eller, M., Continuous observability for the anisotropic Maxwell system, Appl. Math. Optim., 55, 185-201 (2007) · Zbl 1128.35100
[33] Yao, C., The solvability of coupling the thermal effect and magnetohydrodynamics field with turbulent convection zone and the flow field, J. Math. Anal. Appl., 476, 495-521 (2019) · Zbl 1448.76199
[34] Huang, Q.; Jia, S.; Xu, F.; Xu, Z.; Yao, C., Solvability of wave propagation with Debye polarization in nonlinear dielectric materials and its finite element methods approximation, Appl. Numer. Math., 146, 145-164 (2019) · Zbl 1477.78002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.