×

Multiphysics mixed finite element method with Nitsche’s technique for Stokes-poroelasticity problem. (English) Zbl 1531.65161

Summary: In this article, we propose a multiphysics mixed finite element method with Nitsche’s technique for Stokes-poroelasticity problem. Firstly, we reformulate the poroelasticity part of the original problem by introducing two pseudo-pressures to into a “fluid-fluid” coupled problem so that we can use the classical stable finite element pairs to deal with this problem conveniently. Then, we prove the existence and uniqueness of weak solution of the reformulated problem. And we use Nitsche’s technique to approximate the coupling condition at the interface to propose a loosely-coupled time-stepping method to solve three subproblems at each time step-a Stokes problem, a generalized Stokes problem and a mixed diffusion problem. And the proposed method does not require any restriction on the choice of the discrete approximation spaces on each side of the interface provided that appropriate quadrature methods are adopted. Also, we give the stability analysis and error estimates of the loosely-coupled time-stepping method. Finally, we give the numerical tests to show that the proposed numerical method has a good stability and no “locking” phenomenon.
{© 2022 Wiley Periodicals LLC.}

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L10 Soil and rock mechanics
35D30 Weak solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
74S05 Finite element methods applied to problems in solid mechanics
35Q35 PDEs in connection with fluid mechanics
35Q74 PDEs in connection with mechanics of deformable solids

References:

[1] I.Ambartsumyan, E.Khattatov, I.Yotov, and P.Zunino, A Lagrange multiplier method for a Stokes‐Biot fluid‐poroelastic structure interaction model, Numer. Math.140 (2018), 513-553. · Zbl 1406.76081
[2] S.Badia, A.Quaini, and A.Quarteroni, Coupling biot and Navier-Stokes equations for modelling fluid‐poroelastic media interaction, J. Comput. Phys.228 (2009), no. 21, 7986-8014. · Zbl 1391.74234
[3] W. M.Boon, M.Kuchta, K.Mardal, and R.Ruiz‐Bater, Robust preconditioners for perturbed saddle‐point problems and conservative discretizations of Biot’s equations utilizing total pressure, SIAM J. Sci. Comput.43 (2021), B961-B983. · Zbl 07379628
[4] M. S.Bruno, Geomechanical and decision analyses for mitigating compaction‐related casing damage, SPE Drill. Complet.17 (2002), no. 3, 179-188.
[5] M.Bukač, I.Yotov, R.Zakerzadeh, and P.Zunino, Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach, Comput. Methods Appl. Mech. Eng.292 (2015), 138-170. · Zbl 1423.76419
[6] E.Burman and M. A.Fernández, Stabilization of explicit coupling in fluid‐structure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Eng.198 (2009), no. 5-8, 766-784. · Zbl 1229.76045
[7] P. G.Ciarlet, The finite element method for elliptic problems, North‐Holland, Amsterdam, 1978. · Zbl 0383.65058
[8] J. M.Connors and J. S.Howell, A fluid‐fluid interaction method using decoupled subproblems and differing time steps, Numer. Methods Partial Differ. Equations28 (2012), no. 4, 1283-1308. · Zbl 1345.86005
[9] J. M.Connors, J. S.Howell, and W. J.Layton, Decoupled time stepping methods for fluid‐fluid interaction, SIAM J. Numer. Anal.50 (2012), no. 3, 1297-1319. · Zbl 1457.65102
[10] M. B.Dusseault, M. S.Bruno, and J.Barrera, Casing shear: Causes, cases, cures, SPE Drill. Complet.16 (2001), no. 2, 98-107.
[11] X. B.Feng, Z. H.Ge, and Y. K.Li, Analysis of a multiphysics finite element method for a poroelasticity model, IMA J. Numer. Anal.38 (2018), no. 1, 330-359. · Zbl 1406.65085
[12] M. A.Fernández, Incremental displacement‐correction schemes for the explicit coupling of a thin structure with an incompressible fluid, Comptes Rendus Mathematique349 (2011), no. 7-8, 473-477. · Zbl 1344.76026
[13] B.Ganis, M. E.Mear, A.Sakhaee‐Pour, M. F.Wheeler, and T.Wick, Modeling fluid injection in fractures with a reservoir simulator coupled to a boundary element method, Comput. Geosci.18 (2014), no. 5, 613-624. · Zbl 1392.76078
[14] F. J.Gaspar, F. J.Lisbona, C. W.Oosterlee, and R.Wienands, A systematic comparison of coupled and distributive smoothing in multigrid for the poroelasticity system, Numer. Linear Algebra Appl11 (2004), no. 2-3, 93-113. · Zbl 1164.65344
[15] P.Hansbo, Nitsche’s method for interface problems in computational mechanics, GAMM‐Mitteilungen28 (2005), no. 2, 183-206. · Zbl 1179.65147
[16] G. A.Holzapfel, G.Sommer, and P.Regitnig, Anisotropic mechanical properties of tissue components in human atherosclerotic plaques, J. Biomech. Eng.126 (2004), no. 5, 657-665.
[17] J.Kim, H. A.Tchelepi, and R.Juanes, Stability and convergence of sequential methods for coupled flow and geomechanics: Drained and undrained splits, Comput. Methods Appl. Mech. Eng.200 (2011), no. 13-16, 1591-1606. · Zbl 1228.74101
[18] W. J.Layton, F.Schieweck, and I.Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal.40 (2003), no. 6, 2195-2218. · Zbl 1037.76014
[19] J. J.Lee, K.Mardal, and R.Winther, Parameter‐robust discretization and preconditioning of Biot’s consolidation model, SIAM J. Sci. Comput.39 (2017), A1-A24. · Zbl 1381.76183
[20] M.Lesinigo, C.D’Angelo, and A.Quarteroni, A multiscale Darcy‐brinkman model for fluid flow in fractured porous media, Numer. Math.117 (2011), no. 4, 717-752. · Zbl 1305.76109
[21] Y. K.Li. Numerical methods for deterministic and stochastic phase field models of phase transition and related geometric flows, Ph.D. Dissertation, University of Tennessee, 2015.
[22] A.Mikelić and M. F.Wheeler, Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci.17 (2013), no. 3, 455-461. · Zbl 1392.35235
[23] A.Mikelić, M. F.Wheeler, and E.Sanchez‐Palencia, On the interface law between a deformable porous medium containing a viscous fluid and an elastic body, Math. Models Methods Appl. Sci.22 (2012), no. 11, 1250031. · Zbl 1257.35030
[24] S.Muntz, Fluid structure interaction for fluid flow normal to deformable porous media, Technische Universität Kaiserslautern, Kaiserslautern, 2008.
[25] R.Oyarzua and R.Ruiz‐Baier, Locking‐free finite element methods for poroelasticity, SIAM J. Numer. Anal.54 (2016), 2951-2973. · Zbl 1457.65210
[26] P. J.Phillips and M. F.Wheeler, A coupling of mixed and continuous galerkin finite element methods for porowlasticity I: The continuous in time case, Comput. Geosci.11 (2007), no. 2, 131-144. · Zbl 1117.74015
[27] P. J.Phillips and M. F.Wheeler, A coupling of mixed and continuous galerkin finite element methods for porowlasticity II: The discrete in time case, Comput. Geosci.11 (2007), no. 2, 145-158. · Zbl 1117.74016
[28] P. J.Phillips and M. F.Wheeler, A coupling of mixed and discontinuous Galerkin finite‐element methods for poroelasticity, Comput. Geosci.12 (2008), no. 4, 417-435. · Zbl 1155.74048
[29] M.Prosi, P.Zunino, K.Perktold, and A.Quarteroni, Mathematical and numerical models for transfer of low‐density lipoproteins through the arterial walls: A new methodology for the model set up with applications to the study of disturbed lumenal flow, J. Biomech.38 (2005), no. 4, 903-917.
[30] S. M. K.Rausch, C.Martin, P. B.Bornemann, S.Uhlig, and W. A.Wall, Material model of lung parenchyma based on living precision‐cut lung slice testing, J. Mech. Behav. Biomed. Mater.4 (2011), no. 4, 583-592.
[31] R.Ruiz‐Baier, M.Taffetanid, H. D.Westermeyere, and I.Yotov, The Biot-Stokes coupling using total pressure: Formulation, analysis and application to interfacial flow in the eye, Comput. Methods Appl. Mech. Eng.389 (2022), 114384. · Zbl 1507.74508
[32] R.Temam, Navier-Stokes equations. Studies in mathematics and its applications, Vol 2, North‐Holland, 1977. · Zbl 0383.35057
[33] S. P.Vanka, Block‐implicit multigrid solution of Navier‐Stokes equations in primitive variables, J. Comput. Phys.65 (1986), no. 1, 138-158. · Zbl 0606.76035
[34] Y.Wang and M. B.Dusseault, A coupled conductive‐convective thermoporoelastic solution and implications for wellbore stability, J. Pet. Sci. Eng.38 (2003), no. 3, 187-198.
[35] J. A.White and R. I.Borja, Block‐preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics, Comput. Geosci.15 (2011), no. 4, 647-659. · Zbl 1367.76034
[36] S. Y.Yi, A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model, Numer. Methods Partial Differ. Equations29 (2013), no. 5, 1749-1777. · Zbl 1274.74455
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.