×

Finite element method for a nonlinear perfectly matched layer Helmholtz equation with high wave number. (English) Zbl 1502.65204

The authors set up a numerical algorithm in order to solve an exterior problem attached to a nonlinear high order wave number Helmholtz equation (NLH) along with Sommerfeld radiation condition at infinity. They use the perfectly matched layer (PML) boundary technique. The authors’ new idea is to introduce Newton’s sequences of approximate linearized problems to the continuous NLH problem with PML and its FEM, respectively. Then, they establish the well-posedness of both the NLH system and its linear finite element approximation; achieve the convergence of the two sequences and the pre-asymptotic error estimates between them. Some numerical experiments are carried out in order to verify the accuracy of the FEM and to show that the pollution error is greatly reduced by applying the continuous interior penalty FEM.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65H10 Numerical computation of solutions to systems of equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
78A40 Waves and radiation in optics and electromagnetic theory
78A45 Diffraction, scattering
78A60 Lasers, masers, optical bistability, nonlinear optics
35Q60 PDEs in connection with optics and electromagnetic theory
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness

Software:

DLMF

References:

[1] I. M. Babuška and S. A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM Rev., 42 (2000), pp. 451-484. · Zbl 0956.65095
[2] G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell’s equations, SIAM J. Numer. Anal., 43 (2005), pp. 2121-2143. · Zbl 1145.78303
[3] J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), pp. 185-200. · Zbl 0814.65129
[4] R. Boyd, Nonlinear Optics, 3rd ed., Academic, New York, 2008.
[5] J. H. Bramble and J. E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems, Math. Comp., 76 (2007), pp. 597-614. · Zbl 1116.78019
[6] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, New York, 2008. · Zbl 1135.65042
[7] T. Chaumont-Frelet, D. Gallistl, S. Nicaise, and J. Tomezyk, Wavenumber-explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers, Commun. Math. Sci., 20 (2022), pp. 1-52. · Zbl 1484.35162
[8] Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal., 43 (2005), pp. 645-671. · Zbl 1092.65099
[9] Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41 (2003), pp. 799-826. · Zbl 1049.78018
[10] W. Chew, J. Jin, and E. Michielssen, Complex coordinate stretching as a generalized absorbing boundary condition, Microw. Opt. Technol. Lett., 15 (1997), pp. 363-369.
[11] P. G. Ciarlet, The Finite Element Method for Elliptic problems, North Holland, New York, 1978. · Zbl 0383.65058
[12] F. Collino and P. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J. Sci. Comput., 19 (1998), pp. 2061-2090. · Zbl 0940.78011
[13] J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing Methods in Applied Sciences, Lecture Notes in Phys. 58, 1976, pp. 207-216.
[14] Y. Du and H. Wu, Preasymptotic error analysis of higher order FEM and CIP-FEM for Helmholtz equation with high wave number, SIAM J. Numer. Anal., 53 (2015), pp. 782-804. · Zbl 1312.65189
[15] L. C. Evans., Partial Differential Equations, 2nd ed., Grad. Stud. Math., American Mathematical Society, Providence, RI, 2010. · Zbl 1194.35001
[16] X. Feng and H. Wu, Discontinuous Galerkin methods for the Helmholtz equation with large wave number, SIAM J. Numer. Anal., 47 (2009), pp. 2872-2896. · Zbl 1197.65181
[17] G. Fibich and B. Ilan, Vectorial and random effects in self-focusing and in multiple filamentation, Physica D, 157 (2001), pp. 112-146, https://doi.org/10.1016/S0167-2789(01)00293-7. · Zbl 0983.35131
[18] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001. · Zbl 1042.35002
[19] C. J. Gittelson, R. Hiptmair, and I. Perugia, Plane wave discontinuous Galerkin methods: Analysis of the \(h\)-version, ESAIM Math. Model. Numer. Anal., 43 (2009), pp. 297-331. · Zbl 1165.65076
[20] C. Han, Dispersion analysis of the IPFEM for the Helmholtz equation with high wave number on equilateral triangular meshes, Master’s thesis, Nanjing University, Nanjing, China, 2012.
[21] J. Huang and J. Zou, Uniform a priori estimates for elliptic and static Maxwell interface problems, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), pp. 145-170. · Zbl 1130.35020
[22] F. Ihlenburg and I. Babuška, Finite element solution of the Helmholtz equation with high wave number. I. The \(h\)-version of the FEM, Comput. Math. Appl., 30 (1995), pp. 9-37. · Zbl 0838.65108
[23] F. Ihlenburg and I. Babuska, Finite element solution of the Helmholtz equation with high wave number Part II. The \(h-p\) version of the FEM, SIAM J. Numer. Anal., 34 (1997), pp. 315-358. · Zbl 0884.65104
[24] M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations, Computing, 60 (1998), pp. 229-241. · Zbl 0899.35026
[25] M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries, SIAM J. Numer. Anal., 23 (1986), pp. 562-580. · Zbl 0605.65071
[26] Y. Li and H. Wu, FEM and CIP-FEM for Helmholtz equation with high wave number and perfectly matched layer truncation, SIAM J. Numer. Anal., 57 (2019), pp. 96-126. · Zbl 1412.65189
[27] W. C. H. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. · Zbl 0948.35001
[28] J. M. Melenk and S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J. Numer. Anal., 49 (2011), pp. 1210-1243. · Zbl 1229.35038
[29] J. M. Melenk and S. A. Sauter, Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comp., 79 (2010), pp. 1871-1914. · Zbl 1205.65301
[30] J. C. Nédélec, Acoustic and Electromagnetic Equations, Springer, New York, 2001. · Zbl 0981.35002
[31] L. Nirenberg, On Elliptic Partial Differential Equations, Ann. Sc. Norm. Sup. Pisa, 13 (1959), pp. 115-162. · Zbl 0088.07601
[32] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, New York, 2010, http://dlmf.nist.gov. · Zbl 1198.00002
[33] A. H. Schatz and L. B. Wahlbin, Interior maximum norm estimates for finite element methods, Math. Comp., 31 (1977), pp. 414-442. · Zbl 0364.65083
[34] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, London, 1944. · Zbl 0063.08184
[35] H. Wu, Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: Linear version, IMA J. Numer. Anal., 34 (2013), pp. 1266-1288. · Zbl 1296.65144
[36] H. Wu and J. Zou, Finite element method and its analysis for a nonlinear Helmholtz equation with high wave numbers, SIAM J. Numer. Anal., 56 (2018), pp. 1338-1359. · Zbl 1393.65047
[37] L. Yuan and Y. Lu, Robust iterative method for nonlinear Helmholtz equation, J. Comput. Phys., 343 (2017), pp. 1-9. · Zbl 1380.65394
[38] L. Zhu and H. Wu, Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number. Part II: \(hp\)-version, SIAM J. Numer. Anal., 51 (2013), pp. 1828-1852. · Zbl 1416.65468
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.